Multi-Layer Potentials and Boundary Problems for Higher-Order Elliptic Systems in Lipschitz Domains /

Many phenomena in engineering and mathematical physics can be modeled by means of boundary value problems for a certain elliptic differential operator in a given domain. When the differential operator under discussion is of second order a variety of tools are available for dealing with such problems...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Mitrea, Irina (Συγγραφέας), Mitrea, Marius (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2013.
Σειρά:Lecture Notes in Mathematics, 2063
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03783nam a22005295i 4500
001 978-3-642-32666-0
003 DE-He213
005 20151204145816.0
007 cr nn 008mamaa
008 130107s2013 gw | s |||| 0|eng d
020 |a 9783642326660  |9 978-3-642-32666-0 
024 7 |a 10.1007/978-3-642-32666-0  |2 doi 
040 |d GrThAP 
050 4 |a QA404.7-405 
072 7 |a PBWL  |2 bicssc 
072 7 |a MAT033000  |2 bisacsh 
082 0 4 |a 515.96  |2 23 
100 1 |a Mitrea, Irina.  |e author. 
245 1 0 |a Multi-Layer Potentials and Boundary Problems  |h [electronic resource] :  |b for Higher-Order Elliptic Systems in Lipschitz Domains /  |c by Irina Mitrea, Marius Mitrea. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2013. 
300 |a X, 424 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 2063 
505 0 |a 1 Introduction -- 2 Smoothness scales and Caldeón-Zygmund theory in the scalar-valued case -- 3 Function spaces of Whitney arrays -- 4 The double multi-layer potential operator -- 5 The single multi-layer potential operator -- 6 Functional analytic properties of multi-layer potentials and boundary value problems. 
520 |a Many phenomena in engineering and mathematical physics can be modeled by means of boundary value problems for a certain elliptic differential operator in a given domain. When the differential operator under discussion is of second order a variety of tools are available for dealing with such problems, including boundary integral methods, variational methods, harmonic measure techniques, and methods based on classical harmonic analysis. When the differential operator is of higher-order (as is the case, e.g., with anisotropic plate bending when one deals with a fourth order operator) only a few options could be successfully implemented. In the 1970s Alberto Calderón, one of the founders of the modern theory of Singular Integral Operators, advocated the use of layer potentials for the treatment of higher-order elliptic boundary value problems. The present monograph represents the first systematic treatment based on this approach. This research monograph lays, for the first time, the mathematical foundation aimed at solving boundary value problems for higher-order elliptic operators in non-smooth domains using the layer potential method and addresses a comprehensive range of topics, dealing with elliptic boundary value problems in non-smooth domains including layer potentials, jump relations, non-tangential maximal function estimates, multi-traces and extensions, boundary value problems with data in Whitney–Lebesque spaces, Whitney–Besov spaces, Whitney–Sobolev- based Lebesgue spaces, Whitney–Triebel–Lizorkin spaces,Whitney–Sobolev-based Hardy spaces, Whitney–BMO and Whitney–VMO spaces. 
650 0 |a Mathematics. 
650 0 |a Fourier analysis. 
650 0 |a Integral equations. 
650 0 |a Partial differential equations. 
650 0 |a Potential theory (Mathematics). 
650 1 4 |a Mathematics. 
650 2 4 |a Potential Theory. 
650 2 4 |a Partial Differential Equations. 
650 2 4 |a Integral Equations. 
650 2 4 |a Fourier Analysis. 
700 1 |a Mitrea, Marius.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642326653 
830 0 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 2063 
856 4 0 |u http://dx.doi.org/10.1007/978-3-642-32666-0  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
912 |a ZDB-2-LNM 
950 |a Mathematics and Statistics (Springer-11649)