Optimization of PID Controllers Using Ant Colony and Genetic Algorithms
Artificial neural networks, genetic algorithms and the ant colony optimization algorithm have become a highly effective tool for solving hard optimization problems. As their popularity has increased, applications of these algorithms have grown in more than equal measure. While many of the books avai...
| Κύριοι συγγραφείς: | Ünal, Muhammet (Συγγραφέας), Ak, Ayça (Συγγραφέας), Topuz, Vedat (Συγγραφέας), Erdal, Hasan (Συγγραφέας) |
|---|---|
| Συγγραφή απο Οργανισμό/Αρχή: | SpringerLink (Online service) |
| Μορφή: | Ηλεκτρονική πηγή Ηλ. βιβλίο |
| Γλώσσα: | English |
| Έκδοση: |
Berlin, Heidelberg :
Springer Berlin Heidelberg : Imprint: Springer,
2013.
|
| Σειρά: | Studies in Computational Intelligence,
449 |
| Θέματα: | |
| Διαθέσιμο Online: | Full Text via HEAL-Link |
Παρόμοια τεκμήρια
-
Optimization of Type-2 Fuzzy Controllers Using the Bee Colony Algorithm
ανά: Amador, Leticia, κ.ά.
Έκδοση: (2017) -
Computationally Efficient Model Predictive Control Algorithms A Neural Network Approach /
ανά: Ławryńczuk, Maciej
Έκδοση: (2014) -
Visibility-based Optimal Path and Motion Planning
ανά: Wang, Paul Keng-Chieh
Έκδοση: (2015) -
Algorithmic Aspects of Analysis, Prediction, and Control in Science and Engineering An Approach Based on Symmetry and Similarity /
ανά: Nava, Jaime, κ.ά.
Έκδοση: (2015) -
Chemical Optimization Algorithm for Fuzzy Controller Design
ανά: Astudillo, Leslie, κ.ά.
Έκδοση: (2014)