Stability and Bifurcation Theory for Non-Autonomous Differential Equations Cetraro, Italy 2011, Editors: Russell Johnson, Maria Patrizia Pera /

This volume contains the notes from five lecture courses devoted to nonautonomous differential systems, in which appropriate topological and dynamical techniques were described and applied to a variety of problems. The courses took place during the C.I.M.E. Session "Stability and Bifurcation Pr...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Capietto, Anna (Συγγραφέας), Kloeden, Peter (Συγγραφέας), Mawhin, Jean (Συγγραφέας), Novo, Sylvia (Συγγραφέας), Ortega, Rafael (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2013.
Σειρά:Lecture Notes in Mathematics, 2065
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03359nam a22005655i 4500
001 978-3-642-32906-7
003 DE-He213
005 20151030101055.0
007 cr nn 008mamaa
008 121214s2013 gw | s |||| 0|eng d
020 |a 9783642329067  |9 978-3-642-32906-7 
024 7 |a 10.1007/978-3-642-32906-7  |2 doi 
040 |d GrThAP 
050 4 |a QA372 
072 7 |a PBKJ  |2 bicssc 
072 7 |a MAT007000  |2 bisacsh 
082 0 4 |a 515.352  |2 23 
100 1 |a Capietto, Anna.  |e author. 
245 1 0 |a Stability and Bifurcation Theory for Non-Autonomous Differential Equations  |h [electronic resource] :  |b Cetraro, Italy 2011, Editors: Russell Johnson, Maria Patrizia Pera /  |c by Anna Capietto, Peter Kloeden, Jean Mawhin, Sylvia Novo, Rafael Ortega. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2013. 
300 |a IX, 303 p. 26 illus., 9 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 2065 
505 0 |a The Maslov index and global bifurcation for nonlinear boundary value problems -- Discrete-time nonautonomous dynamical systems -- Resonance problems for some non-autonomous ordinary differential equations -- Non-autonomous functional differential equations and applications -- Twist mappings with non-periodic angles. 
520 |a This volume contains the notes from five lecture courses devoted to nonautonomous differential systems, in which appropriate topological and dynamical techniques were described and applied to a variety of problems. The courses took place during the C.I.M.E. Session "Stability and Bifurcation Problems for Non-Autonomous Differential Equations," held in Cetraro, Italy, June 19-25 2011. Anna Capietto and Jean Mawhin lectured on nonlinear boundary value problems; they applied the Maslov index and degree-theoretic methods in this context. Rafael Ortega discussed the theory of twist maps with nonperiodic phase and presented applications. Peter Kloeden and Sylvia Novo showed how dynamical methods can be used to study the stability/bifurcation properties of bounded solutions and of attracting sets for nonautonomous differential and functional-differential equations. The volume will be of interest to all researchers working in these and related fields. 
650 0 |a Mathematics. 
650 0 |a Difference equations. 
650 0 |a Functional equations. 
650 0 |a Dynamics. 
650 0 |a Ergodic theory. 
650 0 |a Differential equations. 
650 1 4 |a Mathematics. 
650 2 4 |a Ordinary Differential Equations. 
650 2 4 |a Difference and Functional Equations. 
650 2 4 |a Dynamical Systems and Ergodic Theory. 
700 1 |a Kloeden, Peter.  |e author. 
700 1 |a Mawhin, Jean.  |e author. 
700 1 |a Novo, Sylvia.  |e author. 
700 1 |a Ortega, Rafael.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642329050 
830 0 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 2065 
856 4 0 |u http://dx.doi.org/10.1007/978-3-642-32906-7  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
912 |a ZDB-2-LNM 
950 |a Mathematics and Statistics (Springer-11649)