Investment Strategies Optimization based on a SAX-GA Methodology

This book presents a new computational finance approach combining a Symbolic Aggregate approXimation (SAX) technique with an optimization kernel based on genetic algorithms (GA). While the SAX representation is used to describe the financial time series, the evolutionary optimization kernel is used...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Canelas, António M.L (Συγγραφέας), Neves, Rui F.M.F (Συγγραφέας), Horta, Nuno C.G (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2013.
Σειρά:SpringerBriefs in Applied Sciences and Technology,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
Περιγραφή
Περίληψη:This book presents a new computational finance approach combining a Symbolic Aggregate approXimation (SAX) technique with an optimization kernel based on genetic algorithms (GA). While the SAX representation is used to describe the financial time series, the evolutionary optimization kernel is used in order to identify the most relevant patterns and generate investment rules. The proposed approach considers several different chromosomes structures in order to achieve better results on the trading platform The methodology presented in this book has great potential on investment markets.
Φυσική περιγραφή:XII, 81 p. 81 illus., 19 illus. in color. online resource.
ISBN:9783642331107
ISSN:2191-530X