Quasi-Stationary Distributions Markov Chains, Diffusions and Dynamical Systems /

Main concepts of quasi-stationary distributions (QSDs) for killed processes are the focus of the present volume. For diffusions, the killing is at the boundary and for dynamical systems there is a trap. The authors present the QSDs as the ones that allow describing the long-term behavior conditioned...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Collet, Pierre (Συγγραφέας), Martínez, Servet (Συγγραφέας), San Martín, Jaime (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2013.
Σειρά:Probability and Its Applications,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03784nam a22005655i 4500
001 978-3-642-33131-2
003 DE-He213
005 20151204185725.0
007 cr nn 008mamaa
008 121026s2013 gw | s |||| 0|eng d
020 |a 9783642331312  |9 978-3-642-33131-2 
024 7 |a 10.1007/978-3-642-33131-2  |2 doi 
040 |d GrThAP 
050 4 |a QA273.A1-274.9 
050 4 |a QA274-274.9 
072 7 |a PBT  |2 bicssc 
072 7 |a PBWL  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
082 0 4 |a 519.2  |2 23 
100 1 |a Collet, Pierre.  |e author. 
245 1 0 |a Quasi-Stationary Distributions  |h [electronic resource] :  |b Markov Chains, Diffusions and Dynamical Systems /  |c by Pierre Collet, Servet Martínez, Jaime San Martín. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2013. 
300 |a XVI, 280 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Probability and Its Applications,  |x 1431-7028 
505 0 |a 1.Introduction -- 2.Quasi-stationary Distributions: General Results -- 3.Markov Chains on Finite Spaces -- 4.Markov Chains on Countable Spaces -- 5.Birth and Death Chains -- 6.Regular Diffusions on [0,∞) -- 7.Infinity as Entrance Boundary -- 8.Dynamical Systems -- References -- Index -- Table of Notations -- Citations Index. . 
520 |a Main concepts of quasi-stationary distributions (QSDs) for killed processes are the focus of the present volume. For diffusions, the killing is at the boundary and for dynamical systems there is a trap. The authors present the QSDs as the ones that allow describing the long-term behavior conditioned to not being killed. Studies in this research area started with Kolmogorov and Yaglom and in the last few decades have received a great deal of attention. The authors provide the exponential distribution property of the killing time for QSDs, present the more general result on their existence and study the process of trajectories that survive forever. For birth-and-death chains and diffusions, the existence of a single or a continuum of QSDs is described. They study the convergence to the extremal QSD and give the classification of the survival process. In this monograph, the authors discuss Gibbs QSDs for symbolic systems and absolutely continuous QSDs for repellers. The findings described are relevant to researchers in the fields of Markov chains, diffusions, potential theory, dynamical systems, and in areas where extinction is a central concept. The theory is illustrated with numerous examples. The volume uniquely presents the distribution behavior of individuals who survive in a decaying population for a very long time. It also provides the background for applications in mathematical ecology, statistical physics, computer sciences, and economics. 
650 0 |a Mathematics. 
650 0 |a Dynamics. 
650 0 |a Ergodic theory. 
650 0 |a Partial differential equations. 
650 0 |a Probabilities. 
650 0 |a Biomathematics. 
650 1 4 |a Mathematics. 
650 2 4 |a Probability Theory and Stochastic Processes. 
650 2 4 |a Dynamical Systems and Ergodic Theory. 
650 2 4 |a Genetics and Population Dynamics. 
650 2 4 |a Partial Differential Equations. 
700 1 |a Martínez, Servet.  |e author. 
700 1 |a San Martín, Jaime.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642331305 
830 0 |a Probability and Its Applications,  |x 1431-7028 
856 4 0 |u http://dx.doi.org/10.1007/978-3-642-33131-2  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)