Guts of Surfaces and the Colored Jones Polynomial

This monograph derives direct and concrete relations between colored Jones polynomials and the topology of incompressible spanning surfaces in knot and link complements. Under mild diagrammatic hypotheses, we prove that the growth of the degree of the colored Jones polynomials is a boundary slope of...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Futer, David (Συγγραφέας), Kalfagianni, Efstratia (Συγγραφέας), Purcell, Jessica (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2013.
Σειρά:Lecture Notes in Mathematics, 2069
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03291nam a22005295i 4500
001 978-3-642-33302-6
003 DE-He213
005 20151123193237.0
007 cr nn 008mamaa
008 121227s2013 gw | s |||| 0|eng d
020 |a 9783642333026  |9 978-3-642-33302-6 
024 7 |a 10.1007/978-3-642-33302-6  |2 doi 
040 |d GrThAP 
050 4 |a QA613-613.8 
050 4 |a QA613.6-613.66 
072 7 |a PBMS  |2 bicssc 
072 7 |a PBPH  |2 bicssc 
072 7 |a MAT038000  |2 bisacsh 
082 0 4 |a 514.34  |2 23 
100 1 |a Futer, David.  |e author. 
245 1 0 |a Guts of Surfaces and the Colored Jones Polynomial  |h [electronic resource] /  |c by David Futer, Efstratia Kalfagianni, Jessica Purcell. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2013. 
300 |a X, 170 p. 62 illus., 45 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 2069 
505 0 |a 1 Introduction -- 2 Decomposition into 3–balls -- 3 Ideal Polyhedra -- 4 I–bundles and essential product disks -- 5 Guts and fibers -- 6 Recognizing essential product disks -- 7 Diagrams without non-prime arcs -- 8 Montesinos links -- 9 Applications -- 10 Discussion and questions. 
520 |a This monograph derives direct and concrete relations between colored Jones polynomials and the topology of incompressible spanning surfaces in knot and link complements. Under mild diagrammatic hypotheses, we prove that the growth of the degree of the colored Jones polynomials is a boundary slope of an essential surface in the knot complement. We show that certain coefficients of the polynomial measure how far this surface is from being a fiber for the knot; in particular, the surface is a fiber if and only if a particular coefficient vanishes. We also relate hyperbolic volume to colored Jones polynomials. Our method is to generalize the checkerboard decompositions of alternating knots. Under mild diagrammatic hypotheses, we show that these surfaces are essential, and obtain an ideal polyhedral decomposition of their complement. We use normal surface theory to relate the pieces of the JSJ decomposition of the  complement to the combinatorics of certain surface spines (state graphs). Since state graphs have previously appeared in the study of Jones polynomials, our method bridges the gap between quantum and geometric knot invariants. 
650 0 |a Mathematics. 
650 0 |a Hyperbolic geometry. 
650 0 |a Manifolds (Mathematics). 
650 0 |a Complex manifolds. 
650 1 4 |a Mathematics. 
650 2 4 |a Manifolds and Cell Complexes (incl. Diff.Topology). 
650 2 4 |a Hyperbolic Geometry. 
700 1 |a Kalfagianni, Efstratia.  |e author. 
700 1 |a Purcell, Jessica.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642333019 
830 0 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 2069 
856 4 0 |u http://dx.doi.org/10.1007/978-3-642-33302-6  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
912 |a ZDB-2-LNM 
950 |a Mathematics and Statistics (Springer-11649)