Time Series Analysis, Modeling and Applications A Computational Intelligence Perspective /

Temporal and spatiotemporal data form an inherent fabric of the society as we are faced with streams of data coming from numerous sensors, data feeds, recordings associated with numerous areas of application embracing physical and human-generated phenomena (environmental data, financial markets, Int...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Pedrycz, Witold (Επιμελητής έκδοσης), Chen, Shyi-Ming (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2013.
Σειρά:Intelligent Systems Reference Library, 47
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
Πίνακας περιεχομένων:
  • From the Contents: The links between statistical and fuzzy models for time series analysis and forecasting
  • Incomplete time series: imputation through Genetic Algorithms
  • Intelligent aggregation and time series smoothing
  • Financial fuzzy Time series models based on ordered fuzzy numbers
  • Stochastic-fuzzy knowledge-based approach to temporal data modeling.-A Novel Choquet integral composition forecasting model for time series data based on completed  extensional L-measure
  • An application of enhanced knowledge models  to fuzzy time series
  • A wavelet transform approach to chaotic short-term forecasting
  • Fuzzy forecasting with fractal analysis for the time series of environmental pollution
  • Support vector regression with kernel Mahalanobis measure for financial forecast.