The Naïve Bayes Model for Unsupervised Word Sense Disambiguation Aspects Concerning Feature Selection /

This book presents recent advances (from 2008 to 2012) concerning use of the Naïve Bayes model in unsupervised word sense disambiguation (WSD). While WSD, in general, has a number of important applications in various fields of artificial intelligence (information retrieval, text processing, machine...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: T. Hristea, Florentina (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2013.
Σειρά:SpringerBriefs in Statistics,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03470nam a22004695i 4500
001 978-3-642-33693-5
003 DE-He213
005 20130727060853.0
007 cr nn 008mamaa
008 121116s2013 gw | s |||| 0|eng d
020 |a 9783642336935  |9 978-3-642-33693-5 
024 7 |a 10.1007/978-3-642-33693-5  |2 doi 
040 |d GrThAP 
050 4 |a QA276-280 
072 7 |a PBT  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
082 0 4 |a 519.5  |2 23 
100 1 |a T. Hristea, Florentina.  |e author. 
245 1 4 |a The Naïve Bayes Model for Unsupervised Word Sense Disambiguation  |h [electronic resource] :  |b Aspects Concerning Feature Selection /  |c by Florentina T. Hristea. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2013. 
300 |a XIII, 70 p. 4 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a SpringerBriefs in Statistics,  |x 2191-544X 
505 0 |a 1.Preliminaries -- 2.The Naïve Bayes Model in the Context of Word Sense Disambiguation -- 3.Semantic WordNet-based Feature Selection -- 4.Syntactic Dependency-based Feature Selection -- 5.N-Gram Features for Unsupervised WSD with an Underlying Naïve Bayes Model References -- Index.  . 
520 |a This book presents recent advances (from 2008 to 2012) concerning use of the Naïve Bayes model in unsupervised word sense disambiguation (WSD). While WSD, in general, has a number of important applications in various fields of artificial intelligence (information retrieval, text processing, machine translation, message understanding, man-machine communication etc.), unsupervised WSD is considered important because it is language-independent and does not require previously annotated corpora. The Naïve Bayes model has been widely used in supervised WSD, but its use in unsupervised WSD has led to more modest disambiguation results and has been less frequent. It seems that the potential of this statistical model with respect to unsupervised WSD continues to remain insufficiently explored. The present book contends that the Naïve Bayes model needs to be fed knowledge in order to perform well as a clustering technique for unsupervised WSD and examines three entirely different sources of such knowledge for feature selection: WordNet, dependency relations and web N-grams. WSD with an underlying Naïve Bayes model is ultimately positioned on the border between unsupervised and knowledge-based techniques. The benefits of feeding knowledge (of various natures) to a knowledge-lean algorithm for unsupervised WSD that uses the Naïve Bayes model as clustering technique are clearly highlighted. The discussion shows that the Naïve Bayes model still holds promise for the open problem of unsupervised WSD. 
650 0 |a Statistics. 
650 0 |a Computer science. 
650 0 |a Artificial intelligence. 
650 1 4 |a Statistics. 
650 2 4 |a Statistics, general. 
650 2 4 |a Computer Science, general. 
650 2 4 |a Artificial Intelligence (incl. Robotics). 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642336928 
830 0 |a SpringerBriefs in Statistics,  |x 2191-544X 
856 4 0 |u http://dx.doi.org/10.1007/978-3-642-33693-5  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)