The Naïve Bayes Model for Unsupervised Word Sense Disambiguation Aspects Concerning Feature Selection /
This book presents recent advances (from 2008 to 2012) concerning use of the Naïve Bayes model in unsupervised word sense disambiguation (WSD). While WSD, in general, has a number of important applications in various fields of artificial intelligence (information retrieval, text processing, machine...
Κύριος συγγραφέας: | |
---|---|
Συγγραφή απο Οργανισμό/Αρχή: | |
Μορφή: | Ηλεκτρονική πηγή Ηλ. βιβλίο |
Γλώσσα: | English |
Έκδοση: |
Berlin, Heidelberg :
Springer Berlin Heidelberg : Imprint: Springer,
2013.
|
Σειρά: | SpringerBriefs in Statistics,
|
Θέματα: | |
Διαθέσιμο Online: | Full Text via HEAL-Link |
Πίνακας περιεχομένων:
- 1.Preliminaries
- 2.The Naïve Bayes Model in the Context of Word Sense Disambiguation
- 3.Semantic WordNet-based Feature Selection
- 4.Syntactic Dependency-based Feature Selection
- 5.N-Gram Features for Unsupervised WSD with an Underlying Naïve Bayes Model References
- Index. .