Regular Functions of a Quaternionic Variable

The theory of slice regular functions over quaternions is the central subject of the present volume. This recent theory has expanded rapidly, producing a variety of new results that have caught the attention of the international research community. At the same time, the theory has already developed...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Gentili, Graziano (Συγγραφέας), Stoppato, Caterina (Συγγραφέας), Struppa, Daniele C. (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2013.
Σειρά:Springer Monographs in Mathematics,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03723nam a22005055i 4500
001 978-3-642-33871-7
003 DE-He213
005 20150619091405.0
007 cr nn 008mamaa
008 130125s2013 gw | s |||| 0|eng d
020 |a 9783642338717  |9 978-3-642-33871-7 
024 7 |a 10.1007/978-3-642-33871-7  |2 doi 
040 |d GrThAP 
050 4 |a QA331-355 
072 7 |a PBKD  |2 bicssc 
072 7 |a MAT034000  |2 bisacsh 
082 0 4 |a 515.9  |2 23 
100 1 |a Gentili, Graziano.  |e author. 
245 1 0 |a Regular Functions of a Quaternionic Variable  |h [electronic resource] /  |c by Graziano Gentili, Caterina Stoppato, Daniele C. Struppa. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2013. 
300 |a XIX, 185 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Monographs in Mathematics,  |x 1439-7382 
505 0 |a Introduction -- 1.Definitions and Basic Results -- 2.Regular Power Series -- 3.Zeros -- 4.Infinite Products -- 5.Singularities -- 6.Integral Representations -- 7.Maximum Modulus Theorem and Applications -- 8.Spherical Series and Differential -- 9.Fractional Transformations and the Unit Ball -- 10.Generalizations and Applications -- Bibliography -- Index. 
520 |a The theory of slice regular functions over quaternions is the central subject of the present volume. This recent theory has expanded rapidly, producing a variety of new results that have caught the attention of the international research community. At the same time, the theory has already developed sturdy foundations. The richness of the theory of the holomorphic functions of one complex variable and its wide variety of applications are a strong motivation for the study of its analogs in higher dimensions. In this respect, the four-dimensional case is particularly interesting due to its relevance in physics and its algebraic properties, as the quaternion forms the only associative real division algebra with a finite dimension n>2. Among other interesting function theories introduced in the quaternionic setting, that of (slice) regular functions shows particularly appealing features. For instance, this class of functions naturally includes polynomials and power series. The zero set of a slice regular function has an interesting structure, strictly linked to a multiplicative operation, and it allows the study of singularities. Integral representation formulas enrich the theory and they are a fundamental tool for one of the applications, the construction of a noncommutative functional calculus. The volume presents a state-of-the-art survey of the theory and a brief overview of its generalizations and applications. It is intended for graduate students and researchers in complex or hypercomplex analysis and geometry, function theory, and functional analysis in general. 
650 0 |a Mathematics. 
650 0 |a Functional analysis. 
650 0 |a Functions of complex variables. 
650 0 |a Sequences (Mathematics). 
650 1 4 |a Mathematics. 
650 2 4 |a Functions of a Complex Variable. 
650 2 4 |a Sequences, Series, Summability. 
650 2 4 |a Functional Analysis. 
700 1 |a Stoppato, Caterina.  |e author. 
700 1 |a Struppa, Daniele C.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642338700 
830 0 |a Springer Monographs in Mathematics,  |x 1439-7382 
856 4 0 |u http://dx.doi.org/10.1007/978-3-642-33871-7  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)