Composite Asymptotic Expansions

The purpose of these lecture notes is to develop a theory of asymptotic expansions for functions involving two variables, while at the same time using functions involving one variable and functions of the quotient of these two variables. Such composite asymptotic expansions (CAsEs) are particularly...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Fruchard, Augustin (Συγγραφέας), Schäfke, Reinhard (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2013.
Σειρά:Lecture Notes in Mathematics, 2066
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03075nam a22005055i 4500
001 978-3-642-34035-2
003 DE-He213
005 20151204161214.0
007 cr nn 008mamaa
008 121215s2013 gw | s |||| 0|eng d
020 |a 9783642340352  |9 978-3-642-34035-2 
024 7 |a 10.1007/978-3-642-34035-2  |2 doi 
040 |d GrThAP 
050 4 |a QA401-425 
072 7 |a PBKJ  |2 bicssc 
072 7 |a MAT034000  |2 bisacsh 
082 0 4 |a 511.4  |2 23 
100 1 |a Fruchard, Augustin.  |e author. 
245 1 0 |a Composite Asymptotic Expansions  |h [electronic resource] /  |c by Augustin Fruchard, Reinhard Schäfke. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2013. 
300 |a X, 161 p. 21 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 2066 
505 0 |a Four Introductory Examples -- Composite Asymptotic Expansions: General Study -- Composite Asymptotic Expansions: Gevrey Theory -- A Theorem of Ramis-Sibuya Type -- Composite Expansions and Singularly Perturbed Differential Equations -- Applications -- Historical Remarks -- References -- Index. 
520 |a The purpose of these lecture notes is to develop a theory of asymptotic expansions for functions involving two variables, while at the same time using functions involving one variable and functions of the quotient of these two variables. Such composite asymptotic expansions (CAsEs) are particularly well-suited to describing solutions of singularly perturbed ordinary differential equations near turning points. CAsEs imply inner and outer expansions near turning points. Thus our approach is closely related to the method of matched asymptotic expansions. CAsEs offer two unique advantages, however. First, they provide uniform expansions near a turning point and away from it. Second, a Gevrey version of CAsEs is available and detailed in the lecture notes. Three problems are presented in which CAsEs are useful. The first application concerns canard solutions near a multiple turning point. The second application concerns so-called non-smooth or angular canard solutions. Finally an Ackerberg-O’Malley resonance problem is solved. 
650 0 |a Mathematics. 
650 0 |a Approximation theory. 
650 0 |a Differential equations. 
650 0 |a Sequences (Mathematics). 
650 1 4 |a Mathematics. 
650 2 4 |a Approximations and Expansions. 
650 2 4 |a Ordinary Differential Equations. 
650 2 4 |a Sequences, Series, Summability. 
700 1 |a Schäfke, Reinhard.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642340345 
830 0 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 2066 
856 4 0 |u http://dx.doi.org/10.1007/978-3-642-34035-2  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
912 |a ZDB-2-LNM 
950 |a Mathematics and Statistics (Springer-11649)