Analytic Tools for Feynman Integrals

The goal of this book is to describe the most powerful methods for evaluating multiloop Feynman integrals that are currently used in practice.  This book supersedes the author’s previous Springer book “Evaluating Feynman Integrals” and its textbook version “Feynman Integral Calculus.” Since the publ...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Smirnov, Vladimir A. (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2012.
Σειρά:Springer Tracts in Modern Physics, 250
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03633nam a22005055i 4500
001 978-3-642-34886-0
003 DE-He213
005 20151204144644.0
007 cr nn 008mamaa
008 130125s2012 gw | s |||| 0|eng d
020 |a 9783642348860  |9 978-3-642-34886-0 
024 7 |a 10.1007/978-3-642-34886-0  |2 doi 
040 |d GrThAP 
050 4 |a QC770-798 
072 7 |a PHP  |2 bicssc 
072 7 |a SCI051000  |2 bisacsh 
082 0 4 |a 539.7  |2 23 
100 1 |a Smirnov, Vladimir A.  |e author. 
245 1 0 |a Analytic Tools for Feynman Integrals  |h [electronic resource] /  |c by Vladimir A. Smirnov. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2012. 
300 |a X, 298 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Tracts in Modern Physics,  |x 0081-3869 ;  |v 250 
505 0 |a Introduction -- Feynman Integrals: Basic Definitions and Tools.-Evaluating by Alpha and Feynman Parameters -- Sector Decompositions -- Evaluating by Mellin-Barnes Representation -- Integration by Parts and Reduction to Master Integrals -- Evaluation by Differential Equations -- Evaluating Master Integrals by Dimensional Recurrence and Analyticity -- Asymptotic Expansions in Momenta and Masses -- Tables -- Some Special Functions- Summation Formulae -- Table of MB Integrals.- A Brief Review of Some Other Methods. 
520 |a The goal of this book is to describe the most powerful methods for evaluating multiloop Feynman integrals that are currently used in practice.  This book supersedes the author’s previous Springer book “Evaluating Feynman Integrals” and its textbook version “Feynman Integral Calculus.” Since the publication of these two books, powerful new methods have arisen and conventional methods have been improved on in essential ways. A further qualitative change is the fact that most of the methods and the corresponding algorithms have now been implemented in computer codes which are often public. In comparison to the two previous books, three new chapters have been added:  One is on sector decomposition, while the second describes a new method by Lee. The third new chapter concerns the asymptotic expansions of Feynman integrals in momenta and masses, which were described in detail in another Springer book, “Applied Asymptotic Expansions in Momenta and Masses,” by the author. This chapter describes, on the basis of papers that appeared after the publication of said book, how to algorithmically discover the regions relevant to a given limit within the strategy of expansion by regions. In addition, the chapters on the method of Mellin-Barnes representation and on the method of integration by parts have been substantially rewritten, with an emphasis on the corresponding algorithms and computer codes. 
650 0 |a Physics. 
650 0 |a Algebra. 
650 0 |a Field theory (Physics). 
650 0 |a Quantum physics. 
650 0 |a Nuclear physics. 
650 1 4 |a Physics. 
650 2 4 |a Particle and Nuclear Physics. 
650 2 4 |a Quantum Physics. 
650 2 4 |a Field Theory and Polynomials. 
650 2 4 |a Numerical and Computational Physics. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642348853 
830 0 |a Springer Tracts in Modern Physics,  |x 0081-3869 ;  |v 250 
856 4 0 |u http://dx.doi.org/10.1007/978-3-642-34886-0  |z Full Text via HEAL-Link 
912 |a ZDB-2-PHA 
950 |a Physics and Astronomy (Springer-11651)