Non-fickian Solute Transport in Porous Media A Mechanistic and Stochastic Theory /

The advection-dispersion equation that is used to model the solute transport in a porous medium is based on the premise that the fluctuating components of the flow velocity, hence the fluxes, due to a porous matrix can be assumed to obey a relationship similar to Fick’s law. This introduces phenomen...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Kulasiri, Don (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2013.
Σειρά:Advances in Geophysical and Environmental Mechanics and Mathematics,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02888nam a22004935i 4500
001 978-3-642-34985-0
003 DE-He213
005 20151125151618.0
007 cr nn 008mamaa
008 130420s2013 gw | s |||| 0|eng d
020 |a 9783642349850  |9 978-3-642-34985-0 
024 7 |a 10.1007/978-3-642-34985-0  |2 doi 
040 |d GrThAP 
050 4 |a QC801-809 
072 7 |a PHVG  |2 bicssc 
072 7 |a SCI032000  |2 bisacsh 
082 0 4 |a 550  |2 23 
082 0 4 |a 526.1  |2 23 
100 1 |a Kulasiri, Don.  |e author. 
245 1 0 |a Non-fickian Solute Transport in Porous Media  |h [electronic resource] :  |b A Mechanistic and Stochastic Theory /  |c by Don Kulasiri. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2013. 
300 |a IX, 227 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Advances in Geophysical and Environmental Mechanics and Mathematics,  |x 1866-8348 
505 0 |a NonFickian Solute Transport -- Stochastic Differential Equations and Related Inverse Problems -- A Stochastic Model for Hydrodynamic Dispersion -- A Generalized Mathematical Model in One-dimension -- Theories of Fluctuations and Dissipation -- Multiscale, Generalised Stochastic Solute Transport Model in One Dimension -- The Stochastic Solute Transport Model in 2-Dimensions -- Multiscale Dispersion in 2 dimensions. 
520 |a The advection-dispersion equation that is used to model the solute transport in a porous medium is based on the premise that the fluctuating components of the flow velocity, hence the fluxes, due to a porous matrix can be assumed to obey a relationship similar to Fick’s law. This introduces phenomenological coefficients which are dependent on the scale of the experiments. This book presents an approach, based on sound theories of stochastic calculus and differential equations, which removes this basic premise. This leads to a multiscale theory with scale independent coefficients. This book illustrates this outcome with available data at different scales, from experimental laboratory scales to regional scales. 
650 0 |a Earth sciences. 
650 0 |a Geophysics. 
650 0 |a Mathematical models. 
650 0 |a Fluids. 
650 1 4 |a Earth Sciences. 
650 2 4 |a Geophysics/Geodesy. 
650 2 4 |a Fluid- and Aerodynamics. 
650 2 4 |a Mathematical Modeling and Industrial Mathematics. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642349843 
830 0 |a Advances in Geophysical and Environmental Mechanics and Mathematics,  |x 1866-8348 
856 4 0 |u http://dx.doi.org/10.1007/978-3-642-34985-0  |z Full Text via HEAL-Link 
912 |a ZDB-2-EES 
950 |a Earth and Environmental Science (Springer-11646)