Topological Derivatives in Shape Optimization

The topological derivative is defined as the first term (correction) of the asymptotic expansion of a given shape functional with respect to a small parameter that measures the size of singular domain perturbations, such as holes, inclusions, defects, source-terms and cracks. Over the last decade, t...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Novotny, Antonio André (Συγγραφέας), Sokołowski, Jan (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2013.
Σειρά:Interaction of Mechanics and Mathematics,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03868nam a22005175i 4500
001 978-3-642-35245-4
003 DE-He213
005 20151125212204.0
007 cr nn 008mamaa
008 121214s2013 gw | s |||| 0|eng d
020 |a 9783642352454  |9 978-3-642-35245-4 
024 7 |a 10.1007/978-3-642-35245-4  |2 doi 
040 |d GrThAP 
050 4 |a TA349-359 
072 7 |a TGMD  |2 bicssc 
072 7 |a TEC009070  |2 bisacsh 
072 7 |a SCI041000  |2 bisacsh 
082 0 4 |a 620.1  |2 23 
100 1 |a Novotny, Antonio André.  |e author. 
245 1 0 |a Topological Derivatives in Shape Optimization  |h [electronic resource] /  |c by Antonio André Novotny, Jan Sokołowski. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2013. 
300 |a XII, 324 p. 68 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Interaction of Mechanics and Mathematics,  |x 1860-6245 
505 0 |a Domain Derivation in Continuum Mechanics -- Material and Shape Derivatives for Boundary Value Problems -- Singular Perturbations of Energy Functionals -- Configurational Perturbations of Energy Functionals -- Topological Derivative Evaluation with Adjoint States -- Topological Derivative for Steady-State Orthotropic Heat Diffusion Problems -- Topological Derivative for Three-Dimensional Linear Elasticity Problems -- Compound Asymptotic Expansions for Spectral Problems -- Topological Asymptotic Analysis for Semilinear Elliptic Boundary Value Problems -- Topological Derivatives for Unilateral Problems. 
520 |a The topological derivative is defined as the first term (correction) of the asymptotic expansion of a given shape functional with respect to a small parameter that measures the size of singular domain perturbations, such as holes, inclusions, defects, source-terms and cracks. Over the last decade, topological asymptotic analysis has become a broad, rich and fascinating research area from both theoretical and numerical standpoints. It has applications in many different fields such as shape and topology optimization, inverse problems, imaging processing and mechanical modeling including synthesis and/or optimal design of microstructures, sensitivity analysis in fracture mechanics and damage evolution modeling. Since there is no monograph on the subject at present, the authors provide here the first account of the theory which combines classical sensitivity analysis in shape optimization with asymptotic analysis by means of compound asymptotic expansions for elliptic boundary value problems. This book is intended for researchers and graduate students in applied mathematics and computational mechanics interested in any aspect of topological asymptotic analysis. In particular, it can be adopted as a textbook in advanced courses on the subject and shall be useful for readers interested in the mathematical aspects of topological asymptotic analysis as well as in applications of topological derivatives in computational mechanics. 
650 0 |a Engineering. 
650 0 |a Mathematical physics. 
650 0 |a Computer mathematics. 
650 0 |a Mechanics. 
650 0 |a Mechanics, Applied. 
650 1 4 |a Engineering. 
650 2 4 |a Theoretical and Applied Mechanics. 
650 2 4 |a Computational Science and Engineering. 
650 2 4 |a Mathematical Applications in the Physical Sciences. 
700 1 |a Sokołowski, Jan.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642352447 
830 0 |a Interaction of Mechanics and Mathematics,  |x 1860-6245 
856 4 0 |u http://dx.doi.org/10.1007/978-3-642-35245-4  |z Full Text via HEAL-Link 
912 |a ZDB-2-ENG 
950 |a Engineering (Springer-11647)