Topological Derivatives in Shape Optimization
The topological derivative is defined as the first term (correction) of the asymptotic expansion of a given shape functional with respect to a small parameter that measures the size of singular domain perturbations, such as holes, inclusions, defects, source-terms and cracks. Over the last decade, t...
Κύριοι συγγραφείς: | Novotny, Antonio André (Συγγραφέας), Sokołowski, Jan (Συγγραφέας) |
---|---|
Συγγραφή απο Οργανισμό/Αρχή: | SpringerLink (Online service) |
Μορφή: | Ηλεκτρονική πηγή Ηλ. βιβλίο |
Γλώσσα: | English |
Έκδοση: |
Berlin, Heidelberg :
Springer Berlin Heidelberg : Imprint: Springer,
2013.
|
Σειρά: | Interaction of Mechanics and Mathematics,
|
Θέματα: | |
Διαθέσιμο Online: | Full Text via HEAL-Link |
Παρόμοια τεκμήρια
-
Computational Methods for Solids and Fluids Multiscale Analysis, Probability Aspects and Model Reduction /
Έκδοση: (2016) -
Finite Elements Methods in Mechanics
ανά: Eslami, M. Reza
Έκδοση: (2014) -
Tensor Calculus for Engineers and Physicists
ανά: de Souza Sánchez Filho, Emil
Έκδοση: (2016) -
Continuous and Distributed Systems II Theory and Applications /
Έκδοση: (2015) -
Numerical Methods for Differential Equations, Optimization, and Technological Problems Dedicated to Professor P. Neittaanmäki on His 60th Birthday /
Έκδοση: (2013)