Topological Derivatives in Shape Optimization

The topological derivative is defined as the first term (correction) of the asymptotic expansion of a given shape functional with respect to a small parameter that measures the size of singular domain perturbations, such as holes, inclusions, defects, source-terms and cracks. Over the last decade, t...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Novotny, Antonio André (Συγγραφέας), Sokołowski, Jan (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2013.
Σειρά:Interaction of Mechanics and Mathematics,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
Πίνακας περιεχομένων:
  • Domain Derivation in Continuum Mechanics
  • Material and Shape Derivatives for Boundary Value Problems
  • Singular Perturbations of Energy Functionals
  • Configurational Perturbations of Energy Functionals
  • Topological Derivative Evaluation with Adjoint States
  • Topological Derivative for Steady-State Orthotropic Heat Diffusion Problems
  • Topological Derivative for Three-Dimensional Linear Elasticity Problems
  • Compound Asymptotic Expansions for Spectral Problems
  • Topological Asymptotic Analysis for Semilinear Elliptic Boundary Value Problems
  • Topological Derivatives for Unilateral Problems.