Topological Derivatives in Shape Optimization
The topological derivative is defined as the first term (correction) of the asymptotic expansion of a given shape functional with respect to a small parameter that measures the size of singular domain perturbations, such as holes, inclusions, defects, source-terms and cracks. Over the last decade, t...
Κύριοι συγγραφείς: | , |
---|---|
Συγγραφή απο Οργανισμό/Αρχή: | |
Μορφή: | Ηλεκτρονική πηγή Ηλ. βιβλίο |
Γλώσσα: | English |
Έκδοση: |
Berlin, Heidelberg :
Springer Berlin Heidelberg : Imprint: Springer,
2013.
|
Σειρά: | Interaction of Mechanics and Mathematics,
|
Θέματα: | |
Διαθέσιμο Online: | Full Text via HEAL-Link |
Πίνακας περιεχομένων:
- Domain Derivation in Continuum Mechanics
- Material and Shape Derivatives for Boundary Value Problems
- Singular Perturbations of Energy Functionals
- Configurational Perturbations of Energy Functionals
- Topological Derivative Evaluation with Adjoint States
- Topological Derivative for Steady-State Orthotropic Heat Diffusion Problems
- Topological Derivative for Three-Dimensional Linear Elasticity Problems
- Compound Asymptotic Expansions for Spectral Problems
- Topological Asymptotic Analysis for Semilinear Elliptic Boundary Value Problems
- Topological Derivatives for Unilateral Problems.