Structure-Preserving Algorithms for Oscillatory Differential Equations

Structure-Preserving Algorithms for Oscillatory Differential Equations describes a large number of highly effective and efficient structure-preserving algorithms for second-order oscillatory differential equations by using theoretical analysis and numerical validation. Structure-preserving algorithm...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Wu, Xinyuan (Συγγραφέας), You, Xiong (Συγγραφέας), Wang, Bin (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2013.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03169nam a22005055i 4500
001 978-3-642-35338-3
003 DE-He213
005 20151125192804.0
007 cr nn 008mamaa
008 130202s2013 gw | s |||| 0|eng d
020 |a 9783642353383  |9 978-3-642-35338-3 
024 7 |a 10.1007/978-3-642-35338-3  |2 doi 
040 |d GrThAP 
050 4 |a TA329-348 
050 4 |a TA640-643 
072 7 |a TBJ  |2 bicssc 
072 7 |a MAT003000  |2 bisacsh 
082 0 4 |a 519  |2 23 
100 1 |a Wu, Xinyuan.  |e author. 
245 1 0 |a Structure-Preserving Algorithms for Oscillatory Differential Equations  |h [electronic resource] /  |c by Xinyuan Wu, Xiong You, Bin Wang. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2013. 
300 |a XII, 236 p. 40 illus., 2 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Runge-Kutta (-Nyström) Methods for Oscillatory Differential Equations -- ARKN Methods -- ERKN Methods -- Symplectic and Symmetric Multidimensional ERKN Methods -- Two-Step Multidimensional ERKN Methods -- Adapted Falkner-Type Methods -- Energy-Preserving ERKN Methods -- Effective Methods for Highly Oscillatory Second-Order Nonlinear Differential Equations -- Extended Leap-Frog Methods for Hamiltonian Wave Equations. 
520 |a Structure-Preserving Algorithms for Oscillatory Differential Equations describes a large number of highly effective and efficient structure-preserving algorithms for second-order oscillatory differential equations by using theoretical analysis and numerical validation. Structure-preserving algorithms for differential equations, especially for oscillatory differential equations, play an important role in the accurate simulation of oscillatory problems in applied sciences and engineering. The book discusses novel advances in the ARKN, ERKN, two-step ERKN, Falkner-type and energy-preserving methods, etc. for oscillatory differential equations. The work is intended for scientists, engineers, teachers and students who are interested in structure-preserving algorithms for differential equations. Xinyuan Wu is a professor at Nanjing University; Xiong You is an associate professor at Nanjing Agricultural University; Bin Wang is a joint Ph.D student of Nanjing University and University of Cambridge. 
650 0 |a Engineering. 
650 0 |a Computer mathematics. 
650 0 |a Physics. 
650 0 |a Applied mathematics. 
650 0 |a Engineering mathematics. 
650 1 4 |a Engineering. 
650 2 4 |a Appl.Mathematics/Computational Methods of Engineering. 
650 2 4 |a Theoretical, Mathematical and Computational Physics. 
650 2 4 |a Computational Science and Engineering. 
700 1 |a You, Xiong.  |e author. 
700 1 |a Wang, Bin.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642353376 
856 4 0 |u http://dx.doi.org/10.1007/978-3-642-35338-3  |z Full Text via HEAL-Link 
912 |a ZDB-2-ENG 
950 |a Engineering (Springer-11647)