Artificial Boundary Method

"Artificial Boundary Method" systematically introduces the artificial boundary method for the numerical solutions of partial differential equations in unbounded domains. Detailed discussions treat different types of problems, including Laplace, Helmholtz, heat, Schrodinger, and Navier and...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Han, Houde (Συγγραφέας), Wu, Xiaonan (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2013.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02731nam a22004695i 4500
001 978-3-642-35464-9
003 DE-He213
005 20151204145419.0
007 cr nn 008mamaa
008 130414s2013 gw | s |||| 0|eng d
020 |a 9783642354649  |9 978-3-642-35464-9 
024 7 |a 10.1007/978-3-642-35464-9  |2 doi 
040 |d GrThAP 
050 4 |a QA71-90 
072 7 |a PBKS  |2 bicssc 
072 7 |a MAT006000  |2 bisacsh 
082 0 4 |a 518  |2 23 
100 1 |a Han, Houde.  |e author. 
245 1 0 |a Artificial Boundary Method  |h [electronic resource] /  |c by Houde Han, Xiaonan Wu. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2013. 
300 |a VIII, 423 p. 17 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Global artificial boundary conditions of second order elliptic differential equations -- Global artificial boundary conditions of Navie Equations and Stokes Equations -- Global artificial boundary conditions of heat equation and Schrodinger Equation -- Fully absorbing boundary conditions of wave equations, Klein-Gordan Equation and linear KdV Equation -- Discrete artificial boundary conditions -- Local artificial boundary conditions -- Implicit artificial boundary conditions -- Nonlinear artificial boundary conditions -- Applications. 
520 |a "Artificial Boundary Method" systematically introduces the artificial boundary method for the numerical solutions of partial differential equations in unbounded domains. Detailed discussions treat different types of problems, including Laplace, Helmholtz, heat, Schrodinger, and Navier and Stokes equations. Both numerical methods and error analysis are discussed. The book is intended for researchers working in the fields of computational mathematics and mechanical engineering. Prof. Houde Han works at Tsinghua University, China; Prof. Xiaonan Wu works at Hong Kong Baptist University, China. 
650 0 |a Mathematics. 
650 0 |a Computer mathematics. 
650 0 |a Applied mathematics. 
650 0 |a Engineering mathematics. 
650 1 4 |a Mathematics. 
650 2 4 |a Computational Mathematics and Numerical Analysis. 
650 2 4 |a Computational Science and Engineering. 
650 2 4 |a Appl.Mathematics/Computational Methods of Engineering. 
700 1 |a Wu, Xiaonan.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642354632 
856 4 0 |u http://dx.doi.org/10.1007/978-3-642-35464-9  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)