Dispersal, Individual Movement and Spatial Ecology A Mathematical Perspective /

Dispersal of plants and animals is one of the most fascinating subjects in ecology. It has long been recognized as an important factor affecting ecosystem dynamics. Dispersal is apparently a phenomenon of biological origin; however, because of its complexity, it cannot be studied comprehensively by...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Lewis, Mark A. (Επιμελητής έκδοσης), Maini, Philip K. (Επιμελητής έκδοσης), Petrovskii, Sergei V. (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2013.
Σειρά:Lecture Notes in Mathematics, 2071
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
Πίνακας περιεχομένων:
  • Part I: Individual Animal Movement
  • 1. Stochas-tic optimal foraging theory
  • 2. Levy or not? Analysing positional data from animal movement paths
  • 3. Beyond optimal searching: Recent developments in the modelling of animal movement patterns as Levy walks
  • Part II: From Individuals to Populations
  • 4. The mathematical analysis of biological aggregation and dispersal: progress, problems and perspectives
  • 5. Hybrid modelling of individual movement and collective behaviour
  • 6. From individual movement rules to population level patterns: the case of central-place foragers
  • 7. Transport and anisotropic diffusion models for movement in oriented habitats
  • 8. Incorporating complex foraging of zooplankton in models: role of micro- and mesoscale processes in macroscale patterns
  • Part III: Populations, Communities and Ecosystems
  • 9. Life on the move: modeling the effects of climate-driven range shifts with integrodifference equations
  • 10. Control of competitive bioinvasion
  • 11. Destruction and diversity: effects of habitat loss on ecological communities
  • 12. Emergence and propagation of patterns in nonlocal reaction-diffusion equations arising in the theory of speciation
  • 13. Numerical study of pest population size at various diffusion rates.