Stability to the Incompressible Navier-Stokes Equations

This thesis contains results of Dr. Guilong Gui during his PhD period with the aim to understand incompressible Navier-Stokes equations. It is devoted to the study of the stability to the incompressible Navier-Stokes equations. There is great potential for further theoretical and numerical research...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Gui, Guilong (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2013.
Σειρά:Springer Theses, Recognizing Outstanding Ph.D. Research,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02518nam a22004335i 4500
001 978-3-642-36028-2
003 DE-He213
005 20151103123711.0
007 cr nn 008mamaa
008 130413s2013 gw | s |||| 0|eng d
020 |a 9783642360282  |9 978-3-642-36028-2 
024 7 |a 10.1007/978-3-642-36028-2  |2 doi 
040 |d GrThAP 
050 4 |a QA370-380 
072 7 |a PBKJ  |2 bicssc 
072 7 |a MAT007000  |2 bisacsh 
082 0 4 |a 515.353  |2 23 
100 1 |a Gui, Guilong.  |e author. 
245 1 0 |a Stability to the Incompressible Navier-Stokes Equations  |h [electronic resource] /  |c by Guilong Gui. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2013. 
300 |a XII, 162 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Theses, Recognizing Outstanding Ph.D. Research,  |x 2190-5053 
505 0 |a Introduction -- Stability to the global large solutions of the Navier-Stokes equations -- Global Smooth Solutions to the 2-D inhomogeneous Navier-Stokes Equations with Variable Viscosity -- On the decay and stability to global solutions of the 3-D inhomogeneous Navier-Stokes equations. 
520 |a This thesis contains results of Dr. Guilong Gui during his PhD period with the aim to understand incompressible Navier-Stokes equations. It is devoted to the study of the stability to the incompressible Navier-Stokes equations. There is great potential for further theoretical and numerical research in this field. The techniques developed in carrying out this work are expected to be useful for other physical model equations. It is also hopeful that the thesis could serve as a valuable reference on current developments in research topics related to the incompressible Navier-Stokes equations. It was nominated by the Graduate University of Chinese Academy of Sciences as an outstanding Ph.D. thesis. 
650 0 |a Mathematics. 
650 0 |a Partial differential equations. 
650 1 4 |a Mathematics. 
650 2 4 |a Partial Differential Equations. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642360275 
830 0 |a Springer Theses, Recognizing Outstanding Ph.D. Research,  |x 2190-5053 
856 4 0 |u http://dx.doi.org/10.1007/978-3-642-36028-2  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)