Real Algebraic Geometry

This book is concerned with one of the most fundamental questions of mathematics: the relationship between algebraic formulas and geometric images. At one of the first international mathematical congresses (in Paris in 1900), Hilbert stated a special case of this question in the form of his 16th pro...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Arnold, Vladimir I. (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Itenberg, Ilia (Επιμελητής έκδοσης), Kharlamov, Viatcheslav (Επιμελητής έκδοσης), Shustin, Eugenii I. (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2013.
Σειρά:UNITEXT, 66
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02800nam a22005415i 4500
001 978-3-642-36243-9
003 DE-He213
005 20151204180750.0
007 cr nn 008mamaa
008 130417s2013 gw | s |||| 0|eng d
020 |a 9783642362439  |9 978-3-642-36243-9 
024 7 |a 10.1007/978-3-642-36243-9  |2 doi 
040 |d GrThAP 
050 4 |a QA564-609 
072 7 |a PBMW  |2 bicssc 
072 7 |a MAT012010  |2 bisacsh 
082 0 4 |a 516.35  |2 23 
100 1 |a Arnold, Vladimir I.  |e author. 
245 1 0 |a Real Algebraic Geometry  |h [electronic resource] /  |c by Vladimir I. Arnold ; edited by Ilia Itenberg, Viatcheslav Kharlamov, Eugenii I. Shustin. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2013. 
300 |a IX, 100 p. 126 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a UNITEXT,  |x 2038-5714 ;  |v 66 
505 0 |a Publisher's Foreword -- Editors' Foreword -- Introduction -- 2 Geometry of Conic Sections -- 3 The Physics of Conic Sections and Ellipsoids -- 4 Projective Geometry -- 5 Complex Algebraic Curves -- 6 A Problem for School Pupils -- A Into How Many Parts do n Lines Divide the Plane?- Editors' Comments on Gudkov's Conjecture -- Notes. 
520 |a This book is concerned with one of the most fundamental questions of mathematics: the relationship between algebraic formulas and geometric images. At one of the first international mathematical congresses (in Paris in 1900), Hilbert stated a special case of this question in the form of his 16th problem (from his list of 23 problems left over from the nineteenth century as a legacy for the twentieth century). In spite of the simplicity and importance of this problem (including its numerous applications), it remains unsolved to this day (although, as you will now see, many remarkable results have been discovered). 
650 0 |a Mathematics. 
650 0 |a Algebraic geometry. 
650 0 |a Mathematical physics. 
650 0 |a Geometry. 
650 0 |a Physics. 
650 1 4 |a Mathematics. 
650 2 4 |a Algebraic Geometry. 
650 2 4 |a Mathematical Methods in Physics. 
650 2 4 |a Geometry. 
650 2 4 |a Mathematical Applications in the Physical Sciences. 
700 1 |a Itenberg, Ilia.  |e editor. 
700 1 |a Kharlamov, Viatcheslav.  |e editor. 
700 1 |a Shustin, Eugenii I.  |e editor. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642362422 
830 0 |a UNITEXT,  |x 2038-5714 ;  |v 66 
856 4 0 |u http://dx.doi.org/10.1007/978-3-642-36243-9  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)