Handbook on Neural Information Processing

This handbook presents some of the most recent topics in neural information processing, covering both theoretical concepts and practical applications. The contributions include:                         Deep architectures                         Recurrent, recursive, and graph neural networks        ...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Bianchini, Monica (Επιμελητής έκδοσης), Maggini, Marco (Επιμελητής έκδοσης), Jain, Lakhmi C. (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2013.
Σειρά:Intelligent Systems Reference Library, 49
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03181nam a22004815i 4500
001 978-3-642-36657-4
003 DE-He213
005 20151103123633.0
007 cr nn 008mamaa
008 130413s2013 gw | s |||| 0|eng d
020 |a 9783642366574  |9 978-3-642-36657-4 
024 7 |a 10.1007/978-3-642-36657-4  |2 doi 
040 |d GrThAP 
050 4 |a Q342 
072 7 |a UYQ  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
082 0 4 |a 006.3  |2 23 
245 1 0 |a Handbook on Neural Information Processing  |h [electronic resource] /  |c edited by Monica Bianchini, Marco Maggini, Lakhmi C. Jain. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2013. 
300 |a XX, 538 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Intelligent Systems Reference Library,  |x 1868-4394 ;  |v 49 
505 0 |a Neural Network Architectures -- Learning paradigms -- Reasoning and applications -- conclusions. Reasoning and applications -- conclusions. Reasoning and applications -- conclusions. 
520 |a This handbook presents some of the most recent topics in neural information processing, covering both theoretical concepts and practical applications. The contributions include:                         Deep architectures                         Recurrent, recursive, and graph neural networks                         Cellular neural networks                         Bayesian networks                         Approximation capabilities of neural networks                         Semi-supervised learning                         Statistical relational learning                         Kernel methods for structured data                         Multiple classifier systems                         Self organisation and modal learning                         Applications to content-based image retrieval, text mining in large document collections, and bioinformatics   This book is thought particularly for graduate students, researchers and practitioners, willing to deepen their knowledge on more advanced connectionist models and related learning paradigms. 
650 0 |a Engineering. 
650 0 |a Artificial intelligence. 
650 0 |a Computational intelligence. 
650 1 4 |a Engineering. 
650 2 4 |a Computational Intelligence. 
650 2 4 |a Artificial Intelligence (incl. Robotics). 
700 1 |a Bianchini, Monica.  |e editor. 
700 1 |a Maggini, Marco.  |e editor. 
700 1 |a Jain, Lakhmi C.  |e editor. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642366567 
830 0 |a Intelligent Systems Reference Library,  |x 1868-4394 ;  |v 49 
856 4 0 |u http://dx.doi.org/10.1007/978-3-642-36657-4  |z Full Text via HEAL-Link 
912 |a ZDB-2-ENG 
950 |a Engineering (Springer-11647)