Fractional Fields and Applications

This book focuses mainly on fractional Brownian fields and their extensions. It has been used to teach graduate students at Grenoble and Toulouse's Universities. It is as self-contained as possible and contains numerous exercises, with solutions in an appendix. After a foreword by Stéphane Jaff...

Full description

Bibliographic Details
Main Authors: Cohen, Serge (Author), Istas, Jacques (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic eBook
Language:English
Published: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2013.
Series:Mathématiques et Applications, 73
Subjects:
Online Access:Full Text via HEAL-Link
LEADER 03735nam a22005535i 4500
001 978-3-642-36739-7
003 DE-He213
005 20151103123046.0
007 cr nn 008mamaa
008 130531s2013 gw | s |||| 0|eng d
020 |a 9783642367397  |9 978-3-642-36739-7 
024 7 |a 10.1007/978-3-642-36739-7  |2 doi 
040 |d GrThAP 
050 4 |a QA273.A1-274.9 
050 4 |a QA274-274.9 
072 7 |a PBT  |2 bicssc 
072 7 |a PBWL  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
082 0 4 |a 519.2  |2 23 
100 1 |a Cohen, Serge.  |e author. 
245 1 0 |a Fractional Fields and Applications  |h [electronic resource] /  |c by Serge Cohen, Jacques Istas. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2013. 
300 |a XII, 270 p. 27 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Mathématiques et Applications,  |x 1154-483X ;  |v 73 
505 0 |a Foreword -- Contents -- Introduction -- Preliminaries -- Self-similarity -- Asymptotic self-similarity -- Statistics -- Simulations -- A Appendix -- B Appendix -- References. 
520 |a This book focuses mainly on fractional Brownian fields and their extensions. It has been used to teach graduate students at Grenoble and Toulouse's Universities. It is as self-contained as possible and contains numerous exercises, with solutions in an appendix. After a foreword by Stéphane Jaffard, a long first chapter is devoted to classical results from stochastic fields and fractal analysis. A central notion throughout this book is self-similarity, which is dealt with in a second chapter with a particular emphasis on the celebrated Gaussian self-similar fields, called fractional Brownian fields after Mandelbrot and Van Ness's seminal paper. Fundamental properties of fractional Brownian fields are then stated and proved. The second central notion of this book is the so-called local asymptotic self-similarity (in short lass), which is a local version of self-similarity, defined in the third chapter. A lengthy study is devoted to lass fields with finite variance. Among these lass fields, we find both Gaussian fields and non-Gaussian fields, called Lévy fields. The Lévy fields can be viewed as bridges between fractional Brownian fields and stable self-similar fields. A further key issue concerns the identification of fractional parameters. This is the raison d'être of the statistics chapter, where generalized quadratic variations methods are mainly used for estimating fractional parameters. Last but not least, the simulation is addressed in the last chapter. Unlike the previous issues, the simulation of fractional fields is still an area of ongoing research. The algorithms presented in this chapter are efficient but do not claim to close the debate. 
650 0 |a Mathematics. 
650 0 |a Probabilities. 
650 0 |a Statistical physics. 
650 0 |a Dynamical systems. 
650 0 |a Statistics. 
650 0 |a Complexity, Computational. 
650 1 4 |a Mathematics. 
650 2 4 |a Probability Theory and Stochastic Processes. 
650 2 4 |a Statistical Theory and Methods. 
650 2 4 |a Complexity. 
650 2 4 |a Statistical Physics, Dynamical Systems and Complexity. 
700 1 |a Istas, Jacques.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642367380 
830 0 |a Mathématiques et Applications,  |x 1154-483X ;  |v 73 
856 4 0 |u http://dx.doi.org/10.1007/978-3-642-36739-7  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)