The Language of Mathematics A Linguistic and Philosophical Investigation /

The Language of Mathematics was awarded the E.W. Beth Dissertation Prize for outstanding dissertations in the fields of logic, language, and information. It innovatively combines techniques from linguistics, philosophy of mathematics, and computation to give the first wide-ranging analysis of mathem...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Ganesalingam, Mohan (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2013.
Σειρά:Lecture Notes in Computer Science, 7805
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 06143nam a22005415i 4500
001 978-3-642-37012-0
003 DE-He213
005 20151204163157.0
007 cr nn 008mamaa
008 130321s2013 gw | s |||| 0|eng d
020 |a 9783642370120  |9 978-3-642-37012-0 
024 7 |a 10.1007/978-3-642-37012-0  |2 doi 
040 |d GrThAP 
050 4 |a T385 
050 4 |a TA1637-1638 
050 4 |a TK7882.P3 
072 7 |a UYQV  |2 bicssc 
072 7 |a COM016000  |2 bisacsh 
082 0 4 |a 006.6  |2 23 
100 1 |a Ganesalingam, Mohan.  |e author. 
245 1 4 |a The Language of Mathematics  |h [electronic resource] :  |b A Linguistic and Philosophical Investigation /  |c by Mohan Ganesalingam. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2013. 
300 |a XX, 260 p. 15 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Computer Science,  |x 0302-9743 ;  |v 7805 
505 0 |a Introduction.-1.1 Challenges -- 1.2 Concepts.-1.2.1 Linguistics and Mathematic.-1.2.2 Time -- 1.2.3 Full Adaptivity -- .3 Scope -- 1.4 Structure -- 1.5 Previous Analyses -- 1.5.1 Ranta -- 1.5.2 de Bruijn -- 1.5.3 Computer Languages -- 1.5.4 Other Work -- 2 The Language of Mathematics -- 2.1 Text and Symbol -- 2.2 Adaptivity -- 2.3 Textual Mathematics -- 2.4 Symbolic Mathematics. -2.4.1 Ranta’s Account and Its Limitations -- 2.4.2 Surface Phenomena -- 2.4.3 Grammatical Status -- 2.4.4 Variables -- 2.4.5 Presuppositions -- 2.4.6 Symbolic Constructions -- 2.5 Rhetorical Structure -- 2.5.1 Blocks -- 2.5.2 Variables and Assumptions -- 2.6 Reanalysis -- 3 Theoretical Framework -- 3.1 Syntax -- 3.2 Types -- 3.3 Semantics -- 3.3.1 The Inadequacy of First-Order Logic -- 3.3.2 Discourse Representation Theory -- 3.3.3 Semantic Functions -- 3.3.4 Representing Variables -- 3.3.5 Localisable Presuppositions -- 3.3.6 Plurals -- 3.3.7 Compositionality -- 3.3.8 Ambiguity and Type -- 3.4 Adaptivity -- 3.4.1 Definitions in Mathematics -- 3.4.2 Real Definitions and Functional Categories -- 3.5 Rhetorical Structure -- 3.5.1 Explanation -- 3.5.2 Blocks -- 3.5.3 Variables and Assumptions -- 3.5.4 Related Work: DRT in NaProChe -- 3.6 Conclusion -- 4 Ambiguity.-4.1 Ambiguity in Symbolic Mathematics.-4.1.1 Ambiguity in Symbolic Material.-4.1.2 Survey: Ambiguity in Formal Languages.-4.1.3 Failure of Standard Mechanisms -- 4.1.4 Discussion.-4.1.5 Disambiguation without Type -- 4.2 Ambiguity in Textual Mathematics.-4.2.1 Survey: Ambiguity in Natural Languages.-4.2.2 Ambiguity in Textual Mathematics -- 4.2.3 Disambiguation without Type -- 4.3 Text and Symbol -- 4.3.1 Dependence of Symbol on Text -- 4.3.2 Dependence of Text on Symbol -- 4.3.3 Text and Symbol: Conclusion -- 4.4 Conclusion -- 5 Type -- 5.1 Distinguishing Notions of Type -- 5.1.1 Types as Formal Tags -- 5.1.2 Types as Properties -- 5.2 Notions of Type in Mathematics -- 5.2.1 Aspect as Formal Tags -- .2.2 Aspect as Properties -- 5.3 Type Distinctions in Mathematics -- 5.3.1 Methodology -- 5.3.2 Examining the Foundations -- 5.3.3 Simple Distinctions -- 5.3.4 Non-extensionality.-5.3.5 Homogeneity and Open Types -- 5.4 Types in Mathematics -- 5.4.1 Presenting Type: Syntax and Semantics -- 5.4.2 Fundamental Type -- 5.4.3 Relational Type -- 5.4.4 Inferential Type -- 5.4.5 Type Inference -- 5.4.6 Type Parametrism -- 5.4.7 Subtyping -- 5.4.8 Type Coercion -- 5.5 Types and Type Theory -- 6 TypedParsing -- 6.1 Type Assignment -- .1.1 Mechanisms -- 6.1.2 Example -- 6.2 Type Requirements -- 6.3 Parsing -- 6.3.1 Type -- 6.3.2 Variables.-6.3.3 Structural Disambiguation -- 6.3.4 Type Cast Minimisation -- 6.3.5 Symmetry Breaking -- 6.4 Example -- 6.5 Further Work -- 7 Foundations -- 7.1 Approach -- 7.2 False Starts -- 7.2.1 All Objects as Sets -- 7.2.2 Hierarchy of Numbers -- 7.2.3 Summary of Standard Picture -- 7.2.4 Invisible Embeddings -- 7.2.5 Introducing Ontogeny -- 7.2.6 Redefinition -- 7.2.7 Manual Replacement -- 7.2.8 Identification and Conservativity -- 7.2.9 Isomorphisms Are Inadequate -- 7.3 Central Problems -- 7.3.1 Ontology and Epistemology -- 7.3.2 Identification -- 7.3.3 Ontogeny -- 7.4 Formalism -- 7.4.1 Abstraction -- 7.4.2 Identification -- 7.5 Application.-7.5.1 Simple Objects.-7.5.2 Natural Numbers -- 7.5.3 Integers -- 7.5.4 Other Numbers -- 7.5.5 Sets and Categories -- 7.5.6 Numbers and Late Identification -- 7.6 Further Work -- 8 Extensions -- 8.1 Textual Extensions -- 8.2 Symbolic Extensions -- 8.3 Covert Arguments -- Conclusion. 
520 |a The Language of Mathematics was awarded the E.W. Beth Dissertation Prize for outstanding dissertations in the fields of logic, language, and information. It innovatively combines techniques from linguistics, philosophy of mathematics, and computation to give the first wide-ranging analysis of mathematical language. It focuses particularly on a method for determining the complete meaning of mathematical texts and on resolving technical deficiencies in all standard accounts of the foundations of mathematics.   "The thesis does far more than is required for a PhD: it is more like a lifetime's work packed into three years, and is a truly exceptional achievement." Timothy Gowers. 
650 0 |a Computer science. 
650 0 |a Mathematical logic. 
650 0 |a Artificial intelligence. 
650 0 |a Computational linguistics. 
650 0 |a Computer graphics. 
650 1 4 |a Computer Science. 
650 2 4 |a Computer Imaging, Vision, Pattern Recognition and Graphics. 
650 2 4 |a Mathematical Logic and Formal Languages. 
650 2 4 |a Language Translation and Linguistics. 
650 2 4 |a Artificial Intelligence (incl. Robotics). 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642370113 
830 0 |a Lecture Notes in Computer Science,  |x 0302-9743 ;  |v 7805 
856 4 0 |u http://dx.doi.org/10.1007/978-3-642-37012-0  |z Full Text via HEAL-Link 
912 |a ZDB-2-SCS 
912 |a ZDB-2-LNC 
950 |a Computer Science (Springer-11645)