Method of Guiding Functions in Problems of Nonlinear Analysis

This book offers a self-contained introduction to the theory of guiding functions methods, which can be used to study the existence of periodic solutions and their bifurcations in ordinary differential equations, differential inclusions and in control theory. It starts with the basic concepts of non...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Obukhovskii, Valeri (Συγγραφέας), Zecca, Pietro (Συγγραφέας), Van Loi, Nguyen (Συγγραφέας), Kornev, Sergei (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2013.
Σειρά:Lecture Notes in Mathematics, 2076
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02796nam a22005415i 4500
001 978-3-642-37070-0
003 DE-He213
005 20151103124517.0
007 cr nn 008mamaa
008 130514s2013 gw | s |||| 0|eng d
020 |a 9783642370700  |9 978-3-642-37070-0 
024 7 |a 10.1007/978-3-642-37070-0  |2 doi 
040 |d GrThAP 
050 4 |a QA1-939 
072 7 |a PB  |2 bicssc 
072 7 |a MAT000000  |2 bisacsh 
082 0 4 |a 510  |2 23 
100 1 |a Obukhovskii, Valeri.  |e author. 
245 1 0 |a Method of Guiding Functions in Problems of Nonlinear Analysis  |h [electronic resource] /  |c by Valeri Obukhovskii, Pietro Zecca, Nguyen Van Loi, Sergei Kornev. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2013. 
300 |a XIII, 177 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 2076 
505 0 |a 1 Background -- 2 MGF in Finite-Dimensional Spaces -- 3 Guiding Functions in Hilbert Spaces.- 4 Second-Order Differential Inclusions.- 5 Nonlinear Fredholm Inclusions. 
520 |a This book offers a self-contained introduction to the theory of guiding functions methods, which can be used to study the existence of periodic solutions and their bifurcations in ordinary differential equations, differential inclusions and in control theory. It starts with the basic concepts of nonlinear and multivalued analysis, describes the classical aspects of the method of guiding functions, and then presents recent findings only available in the research literature. It describes essential applications in control theory, the theory of bifurcations, and physics, making it a valuable resource not only for “pure” mathematicians, but also for students and researchers working in applied mathematics, the engineering sciences and physics. 
650 0 |a Mathematics. 
650 0 |a Operator theory. 
650 0 |a Game theory. 
650 0 |a System theory. 
650 1 4 |a Mathematics. 
650 2 4 |a Mathematics, general. 
650 2 4 |a Operator Theory. 
650 2 4 |a Game Theory, Economics, Social and Behav. Sciences. 
650 2 4 |a Systems Theory, Control. 
700 1 |a Zecca, Pietro.  |e author. 
700 1 |a Van Loi, Nguyen.  |e author. 
700 1 |a Kornev, Sergei.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642370694 
830 0 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 2076 
856 4 0 |u http://dx.doi.org/10.1007/978-3-642-37070-0  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
912 |a ZDB-2-LNM 
950 |a Mathematics and Statistics (Springer-11649)