Approaches to Probabilistic Model Learning for Mobile Manipulation Robots

Mobile manipulation robots are envisioned to provide many useful services both in domestic environments as well as in the industrial context. Examples include domestic service robots that implement large parts of the housework, and versatile industrial assistants that provide automation, transportat...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Sturm, Jürgen (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2013.
Σειρά:Springer Tracts in Advanced Robotics, 89
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03670nam a22005175i 4500
001 978-3-642-37160-8
003 DE-He213
005 20151120220538.0
007 cr nn 008mamaa
008 130508s2013 gw | s |||| 0|eng d
020 |a 9783642371608  |9 978-3-642-37160-8 
024 7 |a 10.1007/978-3-642-37160-8  |2 doi 
040 |d GrThAP 
050 4 |a TJ210.2-211.495 
050 4 |a T59.5 
072 7 |a TJFM1  |2 bicssc 
072 7 |a TEC037000  |2 bisacsh 
072 7 |a TEC004000  |2 bisacsh 
082 0 4 |a 629.892  |2 23 
100 1 |a Sturm, Jürgen.  |e author. 
245 1 0 |a Approaches to Probabilistic Model Learning for Mobile Manipulation Robots  |h [electronic resource] /  |c by Jürgen Sturm. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2013. 
300 |a XXV, 204 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Tracts in Advanced Robotics,  |x 1610-7438 ;  |v 89 
505 0 |a Introduction -- Basics -- Body Schema Learning -- Learning Kinematic Models of Articulated Objects -- Vision-based Perception of Articulated Objects -- Object Recognition using Tactile Sensors -- Object State Estimation using Tactile Sensors -- Learning Manipulation Tasks by Demonstration -- Conclusions. 
520 |a Mobile manipulation robots are envisioned to provide many useful services both in domestic environments as well as in the industrial context. Examples include domestic service robots that implement large parts of the housework, and versatile industrial assistants that provide automation, transportation, inspection, and monitoring services. The challenge in these applications is that the robots have to function under changing, real-world conditions, be able to deal with considerable amounts of noise and uncertainty, and operate without the supervision of an expert. This book presents novel learning techniques that enable mobile manipulation robots, i.e., mobile platforms with one or more robotic manipulators, to autonomously adapt to new or changing situations. The approaches presented in this book cover the following topics: (1) learning the robot's kinematic structure and properties using actuation and visual feedback, (2) learning about articulated objects in the environment in which the robot is operating, (3) using tactile feedback to augment the visual perception, and (4) learning novel manipulation tasks from human demonstrations. This book is an ideal resource for postgraduates and researchers working in robotics, computer vision, and artificial intelligence who want to get an overview on one of the following subjects: ·         kinematic modeling and learning, ·         self-calibration and life-long adaptation, ·         tactile sensing and tactile object recognition, and ·         imitation learning and programming by demonstration. 
650 0 |a Engineering. 
650 0 |a Artificial intelligence. 
650 0 |a Image processing. 
650 0 |a Robotics. 
650 0 |a Automation. 
650 1 4 |a Engineering. 
650 2 4 |a Robotics and Automation. 
650 2 4 |a Artificial Intelligence (incl. Robotics). 
650 2 4 |a Image Processing and Computer Vision. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642371592 
830 0 |a Springer Tracts in Advanced Robotics,  |x 1610-7438 ;  |v 89 
856 4 0 |u http://dx.doi.org/10.1007/978-3-642-37160-8  |z Full Text via HEAL-Link 
912 |a ZDB-2-ENG 
950 |a Engineering (Springer-11647)