Compressed Sensing & Sparse Filtering

This book is aimed at presenting concepts, methods and algorithms ableto cope with undersampled and limited data. One such trend that recently gained popularity and to some extent revolutionised signal processing is compressed sensing. Compressed sensing builds upon the observation that many signals...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Carmi, Avishy Y. (Επιμελητής έκδοσης), Mihaylova, Lyudmila (Επιμελητής έκδοσης), Godsill, Simon J. (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2014.
Σειρά:Signals and Communication Technology,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04254nam a22005655i 4500
001 978-3-642-38398-4
003 DE-He213
005 20151031091054.0
007 cr nn 008mamaa
008 130913s2014 gw | s |||| 0|eng d
020 |a 9783642383984  |9 978-3-642-38398-4 
024 7 |a 10.1007/978-3-642-38398-4  |2 doi 
040 |d GrThAP 
050 4 |a TK5102.9 
050 4 |a TA1637-1638 
050 4 |a TK7882.S65 
072 7 |a TTBM  |2 bicssc 
072 7 |a UYS  |2 bicssc 
072 7 |a TEC008000  |2 bisacsh 
072 7 |a COM073000  |2 bisacsh 
082 0 4 |a 621.382  |2 23 
245 1 0 |a Compressed Sensing & Sparse Filtering  |h [electronic resource] /  |c edited by Avishy Y. Carmi, Lyudmila Mihaylova, Simon J. Godsill. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2014. 
300 |a XII, 502 p. 135 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Signals and Communication Technology,  |x 1860-4862 
505 0 |a Introduction to Compressed Sensing and Sparse Filtering -- The Geometry of Compressed Sensing -- Sparse Signal Recovery with Exponential-Family Noise -- Nuclear Norm Optimization and its Application to Observation Model Specification -- Nonnegative Tensor Decomposition -- Sub-Nyquist Sampling and Compressed Sensing in Cognitive Radio Networks -- Sparse Nonlinear MIMO Filtering and Identification -- Optimization Viewpoint on Kalman Smoothing with Applications to Robust and Sparse Estimation -- Compressive System Identification -- Distributed Approximation and Tracking using Selective Gossip -- Recursive Reconstruction of Sparse Signal Sequences -- Estimation of Time-Varying Sparse Signals in Sensor Networks -- Sparsity and Compressed Sensing in Mono-static and Multi-static Radar Imaging -- Structured Sparse Bayesian Modelling for Audio Restoration -- Sparse Representations for Speech Recognition. 
520 |a This book is aimed at presenting concepts, methods and algorithms ableto cope with undersampled and limited data. One such trend that recently gained popularity and to some extent revolutionised signal processing is compressed sensing. Compressed sensing builds upon the observation that many signals in nature are nearly sparse (or compressible, as they are normally referred to) in some domain, and consequently they can be reconstructed to within high accuracy from far fewer observations than traditionally held to be necessary.  Apart from compressed sensing this book contains other related approaches. Each methodology has its own formalities for dealing with such problems. As an example, in the Bayesian approach, sparseness promoting priors such as Laplace and Cauchy are normally used for penalising improbable model variables, thus promoting low complexity solutions. Compressed sensing techniques and homotopy-type solutions, such as the LASSO, utilise l1-norm penalties for obtaining sparse solutions using fewer observations than conventionally needed. The book emphasizes on the role of sparsity as a machinery for promoting low complexity representations and likewise its connections to variable selection and dimensionality reduction in various engineering problems.  This book is intended for researchers, academics and practitioners with interest in various aspects and applications of sparse signal processing.  . 
650 0 |a Engineering. 
650 0 |a Numerical analysis. 
650 0 |a Algorithms. 
650 0 |a Complexity, Computational. 
650 1 4 |a Engineering. 
650 2 4 |a Signal, Image and Speech Processing. 
650 2 4 |a Numeric Computing. 
650 2 4 |a Mathematics of Algorithmic Complexity. 
650 2 4 |a Complexity. 
700 1 |a Carmi, Avishy Y.  |e editor. 
700 1 |a Mihaylova, Lyudmila.  |e editor. 
700 1 |a Godsill, Simon J.  |e editor. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642383977 
830 0 |a Signals and Communication Technology,  |x 1860-4862 
856 4 0 |u http://dx.doi.org/10.1007/978-3-642-38398-4  |z Full Text via HEAL-Link 
912 |a ZDB-2-ENG 
950 |a Engineering (Springer-11647)