Application of Integrable Systems to Phase Transitions

The eigenvalue densities in various matrix models in quantum chromodynamics (QCD) are ultimately unified in this book by a unified model derived from the integrable systems. Many new density models and free energy functions are consequently solved and presented. The phase transition models including...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Wang, C.B (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2013.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02603nam a22004455i 4500
001 978-3-642-38565-0
003 DE-He213
005 20151218081047.0
007 cr nn 008mamaa
008 130719s2013 gw | s |||| 0|eng d
020 |a 9783642385650  |9 978-3-642-38565-0 
024 7 |a 10.1007/978-3-642-38565-0  |2 doi 
040 |d GrThAP 
050 4 |a QC19.2-20.85 
072 7 |a PBWH  |2 bicssc 
072 7 |a MAT003000  |2 bisacsh 
082 0 4 |a 519  |2 23 
100 1 |a Wang, C.B.  |e author. 
245 1 0 |a Application of Integrable Systems to Phase Transitions  |h [electronic resource] /  |c by C.B. Wang. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2013. 
300 |a X, 219 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Introduction -- Densities in Hermitian Matrix Models -- Bifurcation Transitions and Expansions -- Large-N Transitions and Critical Phenomena -- Densities in Unitary Matrix Models -- Transitions in the Unitary Matrix Models -- Marcenko-Pastur Distribution and McKay’s Law. 
520 |a The eigenvalue densities in various matrix models in quantum chromodynamics (QCD) are ultimately unified in this book by a unified model derived from the integrable systems. Many new density models and free energy functions are consequently solved and presented. The phase transition models including critical phenomena with fractional power-law for the discontinuities of the free energies in the matrix models are systematically classified by means of a clear and rigorous mathematical demonstration. The methods here will stimulate new research directions such as the important Seiberg-Witten differential in Seiberg-Witten theory for solving the mass gap problem in quantum Yang-Mills theory. The formulations and results will benefit researchers and students in the fields of phase transitions, integrable systems, matrix models and Seiberg-Witten theory. 
650 0 |a Mathematics. 
650 0 |a Special functions. 
650 0 |a Mathematical physics. 
650 1 4 |a Mathematics. 
650 2 4 |a Mathematical Applications in the Physical Sciences. 
650 2 4 |a Special Functions. 
650 2 4 |a Mathematical Physics. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642385643 
856 4 0 |u http://dx.doi.org/10.1007/978-3-642-38565-0  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)