Monomial Ideals, Computations and Applications

This work covers three important aspects of monomials ideals in the three chapters "Stanley decompositions" by Jürgen Herzog, "Edge ideals" by Adam Van Tuyl and "Local cohomology" by Josep Álvarez Montaner. The chapters, written by top experts, include computer tutorial...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Bigatti, Anna M. (Επιμελητής έκδοσης), Gimenez, Philippe (Επιμελητής έκδοσης), Sáenz-de-Cabezón, Eduardo (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2013.
Σειρά:Lecture Notes in Mathematics, 2083
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02981nam a22004695i 4500
001 978-3-642-38742-5
003 DE-He213
005 20150519184950.0
007 cr nn 008mamaa
008 130823s2013 gw | s |||| 0|eng d
020 |a 9783642387425  |9 978-3-642-38742-5 
024 7 |a 10.1007/978-3-642-38742-5  |2 doi 
040 |d GrThAP 
050 4 |a QA150-272 
072 7 |a PBF  |2 bicssc 
072 7 |a MAT002000  |2 bisacsh 
082 0 4 |a 512  |2 23 
245 1 0 |a Monomial Ideals, Computations and Applications  |h [electronic resource] /  |c edited by Anna M. Bigatti, Philippe Gimenez, Eduardo Sáenz-de-Cabezón. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2013. 
300 |a XI, 194 p. 42 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 2083 
505 0 |a A survey on Stanley depth -- Stanley decompositions using CoCoA -- A beginner’s guide to edge and cover ideals -- Edge ideals using Macaulay2 -- Local cohomology modules supported on monomial ideals -- Local Cohomology using Macaulay2. 
520 |a This work covers three important aspects of monomials ideals in the three chapters "Stanley decompositions" by Jürgen Herzog, "Edge ideals" by Adam Van Tuyl and "Local cohomology" by Josep Álvarez Montaner. The chapters, written by top experts, include computer tutorials that emphasize the computational aspects of the respective areas. Monomial ideals and algebras are, in a sense, among the simplest structures in commutative algebra and the main objects of combinatorial commutative algebra. Also, they are of major importance for at least three reasons. Firstly, Gröbner basis theory allows us to treat certain problems on general polynomial ideals by means of monomial ideals. Secondly, the combinatorial structure of monomial ideals connects them to other combinatorial structures and allows us to solve problems on both sides of this correspondence using the techniques of each of the respective areas. And thirdly, the combinatorial nature of monomial ideals also makes them particularly well suited to the development of algorithms to work with them and then generate algorithms for more general structures. 
650 0 |a Mathematics. 
650 0 |a Algebra. 
650 1 4 |a Mathematics. 
650 2 4 |a Algebra. 
700 1 |a Bigatti, Anna M.  |e editor. 
700 1 |a Gimenez, Philippe.  |e editor. 
700 1 |a Sáenz-de-Cabezón, Eduardo.  |e editor. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642387418 
830 0 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 2083 
856 4 0 |u http://dx.doi.org/10.1007/978-3-642-38742-5  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
912 |a ZDB-2-LNM 
950 |a Mathematics and Statistics (Springer-11649)