Galois Theory, Coverings, and Riemann Surfaces

The first part of this book provides an elementary and self-contained exposition of classical Galois theory and its applications to questions of solvability of algebraic equations in explicit form. The second part describes a surprising analogy between the fundamental theorem of Galois theory and th...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Khovanskii, Askold (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2013.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03502nam a22005175i 4500
001 978-3-642-38841-5
003 DE-He213
005 20151204141151.0
007 cr nn 008mamaa
008 130911s2013 gw | s |||| 0|eng d
020 |a 9783642388415  |9 978-3-642-38841-5 
024 7 |a 10.1007/978-3-642-38841-5  |2 doi 
040 |d GrThAP 
050 4 |a QA161.A-161.Z 
050 4 |a QA161.P59 
072 7 |a PBF  |2 bicssc 
072 7 |a MAT002010  |2 bisacsh 
082 0 4 |a 512.3  |2 23 
100 1 |a Khovanskii, Askold.  |e author. 
245 1 0 |a Galois Theory, Coverings, and Riemann Surfaces  |h [electronic resource] /  |c by Askold Khovanskii. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2013. 
300 |a VIII, 81 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Chapter 1 Galois Theory: 1.1 Action of a Solvable Group and Representability by Radicals -- 1.2 Fixed Points under an Action of a Finite Group and Its Subgroups -- 1.3 Field Automorphisms and Relations between Elements in a Field -- 1.4 Action of a k-Solvable Group and Representability by k-Radicals -- 1.5 Galois Equations -- 1.6 Automorphisms Connected with a Galois Equation -- 1.7 The Fundamental Theorem of Galois Theory -- 1.8 A Criterion for Solvability of Equations by Radicals -- 1.9 A Criterion for Solvability of Equations by k-Radicals -- 1.10 Unsolvability of Complicated Equations by Solving Simpler Equations -- 1.11 Finite Fields -- Chapter 2 Coverings: 2.1 Coverings over Topological Spaces -- 2.2 Completion of Finite Coverings over Punctured Riemann Surfaces -- Chapter 3 Ramified Coverings and Galois Theory:  3.1 Finite Ramified Coverings and Algebraic Extensions of Fields of Meromorphic Functions -- 3.2 Geometry of Galois Theory for Extensions of a Field of Meromorphic Functions -- References -- Index. 
520 |a The first part of this book provides an elementary and self-contained exposition of classical Galois theory and its applications to questions of solvability of algebraic equations in explicit form. The second part describes a surprising analogy between the fundamental theorem of Galois theory and the classification of coverings over a topological space. The third part contains a geometric description of finite algebraic extensions of the field of meromorphic functions on a Riemann surface and provides an introduction to the topological Galois theory developed by the author. All results are presented in the same elementary and self-contained manner as classical Galois theory, making this book both useful and interesting to readers with a variety of backgrounds in mathematics, from advanced undergraduate students to researchers. 
650 0 |a Mathematics. 
650 0 |a Algebra. 
650 0 |a Algebraic geometry. 
650 0 |a Field theory (Physics). 
650 0 |a Group theory. 
650 0 |a Topology. 
650 1 4 |a Mathematics. 
650 2 4 |a Field Theory and Polynomials. 
650 2 4 |a Group Theory and Generalizations. 
650 2 4 |a Topology. 
650 2 4 |a Algebra. 
650 2 4 |a Algebraic Geometry. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642388408 
856 4 0 |u http://dx.doi.org/10.1007/978-3-642-38841-5  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)