Stochastic Simulation and Monte Carlo Methods Mathematical Foundations of Stochastic Simulation /

In various scientific and industrial fields, stochastic simulations are taking on a new importance. This is due to the increasing power of computers and practitioners’ aim to simulate more and more complex systems, and thus use random parameters as well as random noises to model the parametric uncer...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Graham, Carl (Συγγραφέας), Talay, Denis (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2013.
Σειρά:Stochastic Modelling and Applied Probability, 68
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04357nam a22005175i 4500
001 978-3-642-39363-1
003 DE-He213
005 20151218071928.0
007 cr nn 008mamaa
008 130716s2013 gw | s |||| 0|eng d
020 |a 9783642393631  |9 978-3-642-39363-1 
024 7 |a 10.1007/978-3-642-39363-1  |2 doi 
040 |d GrThAP 
050 4 |a QA273.A1-274.9 
050 4 |a QA274-274.9 
072 7 |a PBT  |2 bicssc 
072 7 |a PBWL  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
082 0 4 |a 519.2  |2 23 
100 1 |a Graham, Carl.  |e author. 
245 1 0 |a Stochastic Simulation and Monte Carlo Methods  |h [electronic resource] :  |b Mathematical Foundations of Stochastic Simulation /  |c by Carl Graham, Denis Talay. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2013. 
300 |a XVI, 260 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Stochastic Modelling and Applied Probability,  |x 0172-4568 ;  |v 68 
505 0 |a Part I:Principles of Monte Carlo Methods -- 1.Introduction -- 2.Strong Law of Large Numbers and Monte Carlo Methods -- 3.Non Asymptotic Error Estimates for Monte Carlo Methods -- Part II:Exact and Approximate Simulation of Markov Processes -- 4.Poisson Processes -- 5.Discrete-Space Markov Processes -- 6.Continuous-Space Markov Processes with Jumps -- 7.Discretization of Stochastic Differential Equations -- Part III:Variance Reduction, Girsanov’s Theorem, and Stochastic Algorithms -- 8.Variance Reduction and Stochastic Differential Equations -- 9.Stochastic Algorithms -- References -- Index. 
520 |a In various scientific and industrial fields, stochastic simulations are taking on a new importance. This is due to the increasing power of computers and practitioners’ aim to simulate more and more complex systems, and thus use random parameters as well as random noises to model the parametric uncertainties and the lack of knowledge on the physics of these systems. The error analysis of these computations is a highly complex mathematical undertaking. Approaching these issues, the authors present stochastic numerical methods and prove accurate convergence rate estimates in terms of their numerical parameters (number of simulations, time discretization steps). As a result, the book is a self-contained and rigorous study of the numerical methods within a theoretical framework. After briefly reviewing the basics, the authors first introduce fundamental notions in stochastic calculus and continuous-time martingale theory, then develop the analysis of pure-jump Markov processes, Poisson processes, and stochastic differential equations. In particular, they review the essential properties of Itô integrals and prove fundamental results on the probabilistic analysis of parabolic partial differential equations. These results in turn provide the basis for developing stochastic numerical methods, both from an algorithmic and theoretical point of view.  The book combines advanced mathematical tools, theoretical analysis of stochastic numerical methods, and practical issues at a high level, so as to provide optimal results on the accuracy of Monte Carlo simulations of stochastic processes. It is intended for master and Ph.D. students in the field of stochastic processes and their numerical applications, as well as for physicists, biologists, economists and other professionals working with stochastic simulations, who will benefit from the ability to reliably estimate and control the accuracy of their simulations.  . 
650 0 |a Mathematics. 
650 0 |a Economics, Mathematical. 
650 0 |a Numerical analysis. 
650 0 |a Probabilities. 
650 1 4 |a Mathematics. 
650 2 4 |a Probability Theory and Stochastic Processes. 
650 2 4 |a Numerical Analysis. 
650 2 4 |a Quantitative Finance. 
700 1 |a Talay, Denis.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642393624 
830 0 |a Stochastic Modelling and Applied Probability,  |x 0172-4568 ;  |v 68 
856 4 0 |u http://dx.doi.org/10.1007/978-3-642-39363-1  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)