Stochastic Simulation and Monte Carlo Methods Mathematical Foundations of Stochastic Simulation /

In various scientific and industrial fields, stochastic simulations are taking on a new importance. This is due to the increasing power of computers and practitioners’ aim to simulate more and more complex systems, and thus use random parameters as well as random noises to model the parametric uncer...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Graham, Carl (Συγγραφέας), Talay, Denis (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2013.
Σειρά:Stochastic Modelling and Applied Probability, 68
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
Πίνακας περιεχομένων:
  • Part I:Principles of Monte Carlo Methods
  • 1.Introduction
  • 2.Strong Law of Large Numbers and Monte Carlo Methods
  • 3.Non Asymptotic Error Estimates for Monte Carlo Methods
  • Part II:Exact and Approximate Simulation of Markov Processes
  • 4.Poisson Processes
  • 5.Discrete-Space Markov Processes
  • 6.Continuous-Space Markov Processes with Jumps
  • 7.Discretization of Stochastic Differential Equations
  • Part III:Variance Reduction, Girsanov’s Theorem, and Stochastic Algorithms
  • 8.Variance Reduction and Stochastic Differential Equations
  • 9.Stochastic Algorithms
  • References
  • Index.