The Concept of Stability in Numerical Mathematics

In this book, the author compares the meaning of stability in different subfields of numerical mathematics.  Concept of Stability in numerical mathematics opens by examining the stability of finite algorithms. A more precise definition of stability holds for quadrature and interpolation methods, whi...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Hackbusch, Wolfgang (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2014.
Σειρά:Springer Series in Computational Mathematics, 45
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02857nam a22004935i 4500
001 978-3-642-39386-0
003 DE-He213
005 20151103121328.0
007 cr nn 008mamaa
008 140206s2014 gw | s |||| 0|eng d
020 |a 9783642393860  |9 978-3-642-39386-0 
024 7 |a 10.1007/978-3-642-39386-0  |2 doi 
040 |d GrThAP 
050 4 |a QA297-299.4 
072 7 |a PBKS  |2 bicssc 
072 7 |a MAT021000  |2 bisacsh 
072 7 |a MAT006000  |2 bisacsh 
082 0 4 |a 518  |2 23 
100 1 |a Hackbusch, Wolfgang.  |e author. 
245 1 4 |a The Concept of Stability in Numerical Mathematics  |h [electronic resource] /  |c by Wolfgang Hackbusch. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2014. 
300 |a XV, 188 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Series in Computational Mathematics,  |x 0179-3632 ;  |v 45 
505 0 |a Preface -- Introduction -- Stability of Finite Algorithms -- Quadrature -- Interpolation -- Ordinary Differential Equations -- Instationary Partial Difference Equations -- Stability for Discretisations of Elliptic Problems -- Stability for Discretisations of Integral Equations -- Index. 
520 |a In this book, the author compares the meaning of stability in different subfields of numerical mathematics.  Concept of Stability in numerical mathematics opens by examining the stability of finite algorithms. A more precise definition of stability holds for quadrature and interpolation methods, which the following chapters focus on. The discussion then progresses to the numerical treatment of ordinary differential equations (ODEs). While one-step methods for ODEs are always stable, this is not the case for hyperbolic or parabolic differential equations, which are investigated next. The final chapters discuss stability for discretisations of elliptic differential equations and integral equations. In comparison among the subfields we discuss the practical importance of stability and the possible conflict between higher consistency order and stability.  . 
650 0 |a Mathematics. 
650 0 |a Integral equations. 
650 0 |a Partial differential equations. 
650 0 |a Numerical analysis. 
650 1 4 |a Mathematics. 
650 2 4 |a Numerical Analysis. 
650 2 4 |a Partial Differential Equations. 
650 2 4 |a Integral Equations. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642393853 
830 0 |a Springer Series in Computational Mathematics,  |x 0179-3632 ;  |v 45 
856 4 0 |u http://dx.doi.org/10.1007/978-3-642-39386-0  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)