Contemporary Evolution Strategies

Evolution strategies have more than 50 years of history in the field of evolutionary computation. Since the early 1990s, many algorithmic variations of evolution strategies have been developed, characterized by the fact that they use the so-called derandomization concept for strategy parameter adapt...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Bäck, Thomas (Συγγραφέας), Foussette, Christophe (Συγγραφέας), Krause, Peter (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2013.
Σειρά:Natural Computing Series,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03889nam a22005295i 4500
001 978-3-642-40137-4
003 DE-He213
005 20151204153740.0
007 cr nn 008mamaa
008 131002s2013 gw | s |||| 0|eng d
020 |a 9783642401374  |9 978-3-642-40137-4 
024 7 |a 10.1007/978-3-642-40137-4  |2 doi 
040 |d GrThAP 
050 4 |a QA76.9.A43 
072 7 |a UMB  |2 bicssc 
072 7 |a COM051300  |2 bisacsh 
082 0 4 |a 005.1  |2 23 
100 1 |a Bäck, Thomas.  |e author. 
245 1 0 |a Contemporary Evolution Strategies  |h [electronic resource] /  |c by Thomas Bäck, Christophe Foussette, Peter Krause. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2013. 
300 |a XIII, 90 p. 33 illus., 31 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Natural Computing Series,  |x 1619-7127 
505 0 |a Chap. 1 - Introduction -- Chap. 2 - Evolution Strategies -- Chap. 3 - Taxonomy of Evolution Strategies -- Chap. 4 - Empirical Analysis -- Chap. 5 - Summary -- List of Figures -- List of Algorithms -- Bibliography. 
520 |a Evolution strategies have more than 50 years of history in the field of evolutionary computation. Since the early 1990s, many algorithmic variations of evolution strategies have been developed, characterized by the fact that they use the so-called derandomization concept for strategy parameter adaptation. Most importantly, the covariance matrix adaptation strategy (CMA-ES) and its successors are the key representatives of this group of contemporary evolution strategies.   This book provides an overview of the key algorithm developments between 1990 and 2012, including brief descriptions of the algorithms, a unified pseudocode representation of each algorithm, and program code which is available for download. In addition, a taxonomy of these algorithms is provided to clarify similarities and differences as well as historical relationships between the various instances of evolution strategies. Moreover, due to the authors’ focus on industrial applications of nonlinear optimization, all algorithms are empirically compared on the so-called BBOB (Black-Box Optimization Benchmarking) test function suite, and ranked according to their performance. In contrast to classical academic comparisons, however, only a very small number of objective function evaluations is permitted. In particular, an extremely small number of evaluations, such as between one hundred and one thousand for high-dimensional functions, is considered. This is motivated by the fact that many industrial optimization tasks do not permit more than a few hundred evaluations. Our experiments suggest that evolution strategies are powerful nonlinear direct optimizers even for challenging industrial problems with a very small budget of function evaluations.   The book is suitable for academic and industrial researchers and practitioners. 
650 0 |a Computer science. 
650 0 |a Algorithms. 
650 0 |a Artificial intelligence. 
650 0 |a Mathematical optimization. 
650 0 |a Computational intelligence. 
650 1 4 |a Computer Science. 
650 2 4 |a Algorithm Analysis and Problem Complexity. 
650 2 4 |a Computational Intelligence. 
650 2 4 |a Artificial Intelligence (incl. Robotics). 
650 2 4 |a Optimization. 
700 1 |a Foussette, Christophe.  |e author. 
700 1 |a Krause, Peter.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642401367 
830 0 |a Natural Computing Series,  |x 1619-7127 
856 4 0 |u http://dx.doi.org/10.1007/978-3-642-40137-4  |z Full Text via HEAL-Link 
912 |a ZDB-2-SCS 
950 |a Computer Science (Springer-11645)