Uncertainty Modeling for Data Mining A Label Semantics Approach /

Machine learning and data mining are inseparably connected with uncertainty. The observable data for learning is usually imprecise, incomplete or noisy. Uncertainty Modeling for Data Mining: A Label Semantics Approach introduces 'label semantics', a fuzzy-logic-based theory for modeling un...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Qin, Zengchang (Συγγραφέας), Tang, Yongchuan (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2014.
Σειρά:Advanced Topics in Science and Technology in China,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02807nam a22005175i 4500
001 978-3-642-41251-6
003 DE-He213
005 20151204155931.0
007 cr nn 008mamaa
008 141030s2014 gw | s |||| 0|eng d
020 |a 9783642412516  |9 978-3-642-41251-6 
024 7 |a 10.1007/978-3-642-41251-6  |2 doi 
040 |d GrThAP 
050 4 |a QA76.9.D343 
072 7 |a UNF  |2 bicssc 
072 7 |a UYQE  |2 bicssc 
072 7 |a COM021030  |2 bisacsh 
082 0 4 |a 006.312  |2 23 
100 1 |a Qin, Zengchang.  |e author. 
245 1 0 |a Uncertainty Modeling for Data Mining  |h [electronic resource] :  |b A Label Semantics Approach /  |c by Zengchang Qin, Yongchuan Tang. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2014. 
300 |a XIX, 291 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Advanced Topics in Science and Technology in China,  |x 1995-6819 
520 |a Machine learning and data mining are inseparably connected with uncertainty. The observable data for learning is usually imprecise, incomplete or noisy. Uncertainty Modeling for Data Mining: A Label Semantics Approach introduces 'label semantics', a fuzzy-logic-based theory for modeling uncertainty. Several new data mining algorithms based on label semantics are proposed and tested on real-world datasets. A prototype interpretation of label semantics and new prototype-based data mining algorithms are also discussed. This book offers a valuable resource for postgraduates, researchers and other professionals in the fields of data mining, fuzzy computing and uncertainty reasoning.   Zengchang Qin is an associate professor at the School of Automation Science and Electrical Engineering, Beihang University, China; Yongchuan Tang is an associate professor at the College of Computer Science, Zhejiang University, China. 
650 0 |a Computer science. 
650 0 |a Computer science  |x Mathematics. 
650 0 |a Computers. 
650 0 |a Data mining. 
650 0 |a Artificial intelligence. 
650 1 4 |a Computer Science. 
650 2 4 |a Data Mining and Knowledge Discovery. 
650 2 4 |a Artificial Intelligence (incl. Robotics). 
650 2 4 |a Information Systems and Communication Service. 
650 2 4 |a Math Applications in Computer Science. 
700 1 |a Tang, Yongchuan.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642412509 
830 0 |a Advanced Topics in Science and Technology in China,  |x 1995-6819 
856 4 0 |u http://dx.doi.org/10.1007/978-3-642-41251-6  |z Full Text via HEAL-Link 
912 |a ZDB-2-SCS 
950 |a Computer Science (Springer-11645)