Gene Network Inference Verification of Methods for Systems Genetics Data /

This book presents recent methods for Systems Genetics (SG) data analysis, applying them to a suite of simulated SG benchmark datasets. Each of the chapter authors received the same datasets to evaluate the performance of their method to better understand which algorithms are most useful for obtaini...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Fuente, Alberto de la (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2013.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03092nam a22005175i 4500
001 978-3-642-45161-4
003 DE-He213
005 20151204150729.0
007 cr nn 008mamaa
008 140103s2013 gw | s |||| 0|eng d
020 |a 9783642451614  |9 978-3-642-45161-4 
024 7 |a 10.1007/978-3-642-45161-4  |2 doi 
040 |d GrThAP 
050 4 |a QH301-705 
072 7 |a PSA  |2 bicssc 
072 7 |a SCI086000  |2 bisacsh 
072 7 |a SCI064000  |2 bisacsh 
082 0 4 |a 570  |2 23 
245 1 0 |a Gene Network Inference  |h [electronic resource] :  |b Verification of Methods for Systems Genetics Data /  |c edited by Alberto de la Fuente. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2013. 
300 |a XI, 130 p. 49 illus., 33 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Simulation of the Benchmark Datasets -- A Panel of Learning Methods for the Reconstruction of Gene Regulatory Networks in a Systems Genetics Context -- Benchmarking a simple yet effective approach for inferring gene regulatory networks from systems genetics data -- Differential Equation based reverse-engineering algorithms: pros and cons -- Gene regulatory network inference from systems genetics data using tree-based methods -- Extending partially known networks -- Integration of genetic variation as external perturbation to reverse engineer regulatory networks from gene expression data -- Using Simulated Data to Evaluate Bayesian Network Approach for Integrating Diverse Data. 
520 |a This book presents recent methods for Systems Genetics (SG) data analysis, applying them to a suite of simulated SG benchmark datasets. Each of the chapter authors received the same datasets to evaluate the performance of their method to better understand which algorithms are most useful for obtaining reliable models from SG datasets. The knowledge gained from this benchmarking study will ultimately allow these algorithms to be used with confidence for SG studies e.g. of complex human diseases or food crop improvement. The book is primarily intended for researchers with a background in the life sciences, not for computer scientists or statisticians. 
650 0 |a Life sciences. 
650 0 |a Gene expression. 
650 0 |a Bioinformatics. 
650 0 |a Systems biology. 
650 0 |a Computational biology. 
650 0 |a Biological systems. 
650 1 4 |a Life Sciences. 
650 2 4 |a Systems Biology. 
650 2 4 |a Bioinformatics. 
650 2 4 |a Biological Networks, Systems Biology. 
650 2 4 |a Computer Appl. in Life Sciences. 
650 2 4 |a Gene Expression. 
700 1 |a Fuente, Alberto de la.  |e editor. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642451607 
856 4 0 |u http://dx.doi.org/10.1007/978-3-642-45161-4  |z Full Text via HEAL-Link 
912 |a ZDB-2-SBL 
950 |a Biomedical and Life Sciences (Springer-11642)