Guided Self-Organization: Inception

Is it possible to guide the process of self-organisation towards specific patterns and outcomes?  Wouldn’t this be self-contradictory?   After all, a self-organising process assumes a transition into a more organised form, or towards a more structured functionality, in the absence of centralised con...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Prokopenko, Mikhail (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2014.
Σειρά:Emergence, Complexity and Computation, 9
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03286nam a22005295i 4500
001 978-3-642-53734-9
003 DE-He213
005 20151103124353.0
007 cr nn 008mamaa
008 131219s2014 gw | s |||| 0|eng d
020 |a 9783642537349  |9 978-3-642-53734-9 
024 7 |a 10.1007/978-3-642-53734-9  |2 doi 
040 |d GrThAP 
050 4 |a QA76.9.M35 
072 7 |a GPFC  |2 bicssc 
072 7 |a TEC000000  |2 bisacsh 
082 0 4 |a 620  |2 23 
245 1 0 |a Guided Self-Organization: Inception  |h [electronic resource] /  |c edited by Mikhail Prokopenko. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2014. 
300 |a XXII, 475 p. 172 illus., 54 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Emergence, Complexity and Computation,  |x 2194-7287 ;  |v 9 
505 0 |a Foundational frameworks -- Coordinated behaviour and learning within an embodied agent -- Swarms and networks of agents. 
520 |a Is it possible to guide the process of self-organisation towards specific patterns and outcomes?  Wouldn’t this be self-contradictory?   After all, a self-organising process assumes a transition into a more organised form, or towards a more structured functionality, in the absence of centralised control.  Then how can we place the guiding elements so that they do not override rich choices potentially discoverable by an uncontrolled process?  This book presents different approaches to resolving this paradox.  In doing so, the presented studies address a broad range of phenomena, ranging from autopoietic systems to morphological computation, and from small-world networks to information cascades in swarms.  A large variety of methods is employed, from spontaneous symmetry breaking to information dynamics to evolutionary algorithms, creating a rich spectrum reflecting this emerging field. Demonstrating several foundational theories and frameworks, as well as innovative practical implementations, Guided Self-Organisation: Inception, will be an invaluable tool for advanced students and researchers in a multiplicity of fields across computer science, physics and biology, including information theory, robotics, dynamical systems, graph theory, artificial life, multi-agent systems, theory of computation and machine learning. 
650 0 |a Engineering. 
650 0 |a Computers. 
650 0 |a Artificial intelligence. 
650 0 |a Statistical physics. 
650 0 |a Computational intelligence. 
650 0 |a Complexity, Computational. 
650 1 4 |a Engineering. 
650 2 4 |a Complexity. 
650 2 4 |a Theory of Computation. 
650 2 4 |a Artificial Intelligence (incl. Robotics). 
650 2 4 |a Computational Intelligence. 
650 2 4 |a Nonlinear Dynamics. 
700 1 |a Prokopenko, Mikhail.  |e editor. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642537332 
830 0 |a Emergence, Complexity and Computation,  |x 2194-7287 ;  |v 9 
856 4 0 |u http://dx.doi.org/10.1007/978-3-642-53734-9  |z Full Text via HEAL-Link 
912 |a ZDB-2-ENG 
950 |a Engineering (Springer-11647)