Set-valued Optimization An Introduction with Applications /

Set-valued optimization is a vibrant and expanding branch of mathematics that deals with optimization problems where the objective map and/or the constraints maps are set-valued maps acting between certain spaces. Since set-valued maps subsumes single valued maps, set-valued optimization provides an...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Khan, Akhtar A. (Συγγραφέας), Tammer, Christiane (Συγγραφέας), Zălinescu, Constantin (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2015.
Σειρά:Vector Optimization,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
Πίνακας περιεχομένων:
  • Introduction
  • Order Relations and Ordering Cones
  • Continuity and Differentiability
  • Tangent Cones and Tangent Sets
  • Nonconvex Separation Theorems
  • Hahn-Banach Type Theorems
  • Hahn-Banach Type Theorems
  • Conjugates and Subdifferentials
  • Duality
  • Existence Results for Minimal Points
  • Ekeland Variational Principle
  • Derivatives and Epiderivatives of Set-valued Maps
  • Optimality Conditions in Set-valued Optimization
  • Sensitivity Analysis in Set-valued Optimization and Vector Variational Inequalities
  • Numerical Methods for Solving Set-valued Optimization Problems
  • Applications.