Set-valued Optimization An Introduction with Applications /
Set-valued optimization is a vibrant and expanding branch of mathematics that deals with optimization problems where the objective map and/or the constraints maps are set-valued maps acting between certain spaces. Since set-valued maps subsumes single valued maps, set-valued optimization provides an...
Κύριοι συγγραφείς: | , , |
---|---|
Συγγραφή απο Οργανισμό/Αρχή: | |
Μορφή: | Ηλεκτρονική πηγή Ηλ. βιβλίο |
Γλώσσα: | English |
Έκδοση: |
Berlin, Heidelberg :
Springer Berlin Heidelberg : Imprint: Springer,
2015.
|
Σειρά: | Vector Optimization,
|
Θέματα: | |
Διαθέσιμο Online: | Full Text via HEAL-Link |
Πίνακας περιεχομένων:
- Introduction
- Order Relations and Ordering Cones
- Continuity and Differentiability
- Tangent Cones and Tangent Sets
- Nonconvex Separation Theorems
- Hahn-Banach Type Theorems
- Hahn-Banach Type Theorems
- Conjugates and Subdifferentials
- Duality
- Existence Results for Minimal Points
- Ekeland Variational Principle
- Derivatives and Epiderivatives of Set-valued Maps
- Optimality Conditions in Set-valued Optimization
- Sensitivity Analysis in Set-valued Optimization and Vector Variational Inequalities
- Numerical Methods for Solving Set-valued Optimization Problems
- Applications.