Variable Ordering Structures in Vector Optimization

This book provides an introduction to vector optimization with variable ordering structures, i.e., to optimization problems with a vector-valued objective function where the elements in the objective space are compared based on a variable ordering structure: instead of a partial ordering defined by...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Eichfelder, Gabriele (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2014.
Σειρά:Vector Optimization,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03005nam a22005175i 4500
001 978-3-642-54283-1
003 DE-He213
005 20151111021154.0
007 cr nn 008mamaa
008 140404s2014 gw | s |||| 0|eng d
020 |a 9783642542831  |9 978-3-642-54283-1 
024 7 |a 10.1007/978-3-642-54283-1  |2 doi 
040 |d GrThAP 
050 4 |a QA402.5-402.6 
072 7 |a PBU  |2 bicssc 
072 7 |a MAT003000  |2 bisacsh 
082 0 4 |a 519.6  |2 23 
100 1 |a Eichfelder, Gabriele.  |e author. 
245 1 0 |a Variable Ordering Structures in Vector Optimization  |h [electronic resource] /  |c by Gabriele Eichfelder. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2014. 
300 |a XIII, 190 p. 41 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Vector Optimization,  |x 1867-8971 
505 0 |a 1 Variable ordering structures -- 2 Optimality concepts and their characterization -- 3 Properties of cone-valued maps -- 4 Linear scalarizations -- 5 Nonlinear scalarizations -- 6 Scalarization for variable orderings given by Bishop-Phelps cones -- 7 Optimality conditions -- 8 Duality results -- 9 Numerical methods -- 10 Outlook and further application areas. 
520 |a This book provides an introduction to vector optimization with variable ordering structures, i.e., to optimization problems with a vector-valued objective function where the elements in the objective space are compared based on a variable ordering structure: instead of a partial ordering defined by a convex cone, we see a whole family of convex cones, one attached to each element of the objective space.The book starts by presenting several applications that have recently sparked new interest in these optimization problems, and goes on to discuss fundamentals and important results on a wide range of topics. The theory developed includes various optimality notions, linear and nonlinear scalarization functionals, optimality conditions of Fermat and Lagrange type, existence and duality results. The book closes with a collection of numerical approaches for solving these problems in practice. 
650 0 |a Mathematics. 
650 0 |a Operations research. 
650 0 |a Decision making. 
650 0 |a Applied mathematics. 
650 0 |a Engineering mathematics. 
650 0 |a Mathematical optimization. 
650 1 4 |a Mathematics. 
650 2 4 |a Optimization. 
650 2 4 |a Operation Research/Decision Theory. 
650 2 4 |a Applications of Mathematics. 
650 2 4 |a Continuous Optimization. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642542824 
830 0 |a Vector Optimization,  |x 1867-8971 
856 4 0 |u http://dx.doi.org/10.1007/978-3-642-54283-1  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)