Data-driven Modeling for Diabetes Diagnosis and Treatment /
This contributed volume presents computational models of diabetes that quantify the dynamic interrelationships among key physiological variables implicated in the underlying physiology under a variety of metabolic and behavioral conditions. These variables comprise for example blood glucose concentr...
Συγγραφή απο Οργανισμό/Αρχή: | |
---|---|
Άλλοι συγγραφείς: | , |
Μορφή: | Ηλεκτρονική πηγή Ηλ. βιβλίο |
Γλώσσα: | English |
Έκδοση: |
Berlin, Heidelberg :
Springer Berlin Heidelberg : Imprint: Springer,
2014.
|
Σειρά: | Lecture Notes in Bioengineering,
|
Θέματα: | |
Διαθέσιμο Online: | Full Text via HEAL-Link |
Πίνακας περιεχομένων:
- Hypoglycemia Prevention using Low Glucose Suspend Systems
- Linear Modeling and Prediction in Diabetes Physiology
- Adaptive Algorithms for Personalized Diabetes Treatment
- Data-driven modeling of Diabetes Progression
- Nonlinear Modeling of the Dynamic Effects of Free Fatty Acids on Insulin Sensitivity
- Data-driven and Mininal-type Compartmental Insulin-Glucose Models: Theory and Applications
- Pitfalls in model identification: examples from Glucose-Insulin modelling
- Ensemble Glucose Prediction in Insulin-Dependent Diabetes
- Simple parameters describing gut absorption and lipid dynamics in relation to glucose metabolism during a routine oral glucose test
- Simulation Models for In-Silico Evaluation of Closed-Loop Insulin Delivery Systems in Type 1 Diabetes.