An Introduction to Bartlett Correction and Bias Reduction

This book presents a concise introduction to Bartlett and Bartlett-type corrections of statistical tests and bias correction of point estimators. The underlying idea behind both groups of corrections is to obtain higher accuracy in small samples. While the main focus is on corrections that can be an...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Cordeiro, Gauss M. (Συγγραφέας), Cribari-Neto, Francisco (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2014.
Σειρά:SpringerBriefs in Statistics,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02430nam a22004695i 4500
001 978-3-642-55255-7
003 DE-He213
005 20151031131051.0
007 cr nn 008mamaa
008 140508s2014 gw | s |||| 0|eng d
020 |a 9783642552557  |9 978-3-642-55255-7 
024 7 |a 10.1007/978-3-642-55255-7  |2 doi 
040 |d GrThAP 
050 4 |a QA276-280 
072 7 |a PBT  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
082 0 4 |a 519.5  |2 23 
100 1 |a Cordeiro, Gauss M.  |e author. 
245 1 3 |a An Introduction to Bartlett Correction and Bias Reduction  |h [electronic resource] /  |c by Gauss M. Cordeiro, Francisco Cribari-Neto. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2014. 
300 |a XI, 107 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a SpringerBriefs in Statistics,  |x 2191-544X 
505 0 |a Preface -- Likelihood-Based Inference and Finite-Sample Corrections: A Brief Overview -- Bartlett Corrections and Bootstrap Testing Inference -- Bartlett-Type Corrections -- Analytical and Bootstrap Bias Corrections -- Supplementary Material -- Glossary. 
520 |a This book presents a concise introduction to Bartlett and Bartlett-type corrections of statistical tests and bias correction of point estimators. The underlying idea behind both groups of corrections is to obtain higher accuracy in small samples. While the main focus is on corrections that can be analytically derived, the authors also present alternative strategies for improving estimators and tests based on bootstrap, a data resampling technique, and discuss concrete applications to several important statistical models. 
650 0 |a Statistics. 
650 0 |a Econometrics. 
650 1 4 |a Statistics. 
650 2 4 |a Statistical Theory and Methods. 
650 2 4 |a Econometrics. 
650 2 4 |a Statistics for Business/Economics/Mathematical Finance/Insurance. 
700 1 |a Cribari-Neto, Francisco.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642552540 
830 0 |a SpringerBriefs in Statistics,  |x 2191-544X 
856 4 0 |u http://dx.doi.org/10.1007/978-3-642-55255-7  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)