Growing Adaptive Machines Combining Development and Learning in Artificial Neural Networks /

The pursuit of artificial intelligence has been a highly active domain of research for decades, yielding exciting scientific insights and productive new technologies. In terms of generating intelligence, however, this pursuit has yielded only limited success. This book explores the hypothesis that a...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Kowaliw, Taras (Επιμελητής έκδοσης), Bredeche, Nicolas (Επιμελητής έκδοσης), Doursat, René (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2014.
Σειρά:Studies in Computational Intelligence, 557
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04286nam a22004815i 4500
001 978-3-642-55337-0
003 DE-He213
005 20151204145500.0
007 cr nn 008mamaa
008 140604s2014 gw | s |||| 0|eng d
020 |a 9783642553370  |9 978-3-642-55337-0 
024 7 |a 10.1007/978-3-642-55337-0  |2 doi 
040 |d GrThAP 
050 4 |a Q342 
072 7 |a UYQ  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
082 0 4 |a 006.3  |2 23 
245 1 0 |a Growing Adaptive Machines  |h [electronic resource] :  |b Combining Development and Learning in Artificial Neural Networks /  |c edited by Taras Kowaliw, Nicolas Bredeche, René Doursat. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2014. 
300 |a VII, 261 p. 82 illus., 14 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Studies in Computational Intelligence,  |x 1860-949X ;  |v 557 
505 0 |a Artificial neurogenesis: An introduction and selective review -- A Brief Introduction to Probabilistic Machine Learning and its Relation to Neuroscience -- Evolving culture versus local minima -- Learning sparse features with an auto-associator -- HyperNEAT: the first five years -- Using the GReaNs (Genetic Regulatory evolving artificial Networks) platform for signal processing, animat control, and artificial multicellular development -- Constructing complex systems via activity-driven unsupervised Hebbian self-organization -- Neuro-centric and holocentric approaches to the evolution of developmental neural networks -- Artificial evolution of plastic neural networks: A few key concepts. 
520 |a The pursuit of artificial intelligence has been a highly active domain of research for decades, yielding exciting scientific insights and productive new technologies. In terms of generating intelligence, however, this pursuit has yielded only limited success. This book explores the hypothesis that adaptive growth is a means of moving forward. By emulating the biological process of development, we can incorporate desirable characteristics of natural neural systems into engineered designs, and thus move closer towards the creation of brain-like systems. The particular focus is on how to design artificial neural networks for engineering tasks. The book consists of contributions from 18 researchers, ranging from detailed reviews of recent domains by senior scientists, to exciting new contributions representing the state of the art in machine learning research. The book begins with broad overviews of artificial neurogenesis and bio-inspired machine learning, suitable both as an introduction to the domains and as a reference for experts. Several contributions provide perspectives and future hypotheses on recent highly successful trains of research, including deep learning, the HyperNEAT model of developmental neural network design, and a simulation of the visual cortex. Other contributions cover recent advances in the design of bio-inspired artificial neural networks, including the creation of machines for classification, the behavioural control of virtual agents, the desi gn of virtual multi-component robots and morphologies, and the creation of flexible intelligence. Throughout, the contributors share their vast expertise on the means and benefits of creating brain-like machines. This book is appropriate for advanced students and practitioners of artificial intelligence and machine learning. 
650 0 |a Engineering. 
650 0 |a Artificial intelligence. 
650 0 |a Computational intelligence. 
650 1 4 |a Engineering. 
650 2 4 |a Computational Intelligence. 
650 2 4 |a Artificial Intelligence (incl. Robotics). 
700 1 |a Kowaliw, Taras.  |e editor. 
700 1 |a Bredeche, Nicolas.  |e editor. 
700 1 |a Doursat, René.  |e editor. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642553363 
830 0 |a Studies in Computational Intelligence,  |x 1860-949X ;  |v 557 
856 4 0 |u http://dx.doi.org/10.1007/978-3-642-55337-0  |z Full Text via HEAL-Link 
912 |a ZDB-2-ENG 
950 |a Engineering (Springer-11647)