Lp-Theory for Incompressible Newtonian Flows Energy Preserving Boundary Conditions, Weakly Singular Domains /

This thesis is devoted to the study of the basic equations of fluid dynamics. First Matthias Köhne focuses on the derivation of a class of boundary conditions, which is based on energy estimates, and, thus, leads to physically relevant conditions. The derived class thereby contains many prominent ar...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Köhne, Matthias (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Wiesbaden : Springer Fachmedien Wiesbaden : Imprint: Springer Spektrum, 2013.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03209nam a22004095i 4500
001 978-3-658-01052-2
003 DE-He213
005 20130727071635.0
007 cr nn 008mamaa
008 121206s2013 gw | s |||| 0|eng d
020 |a 9783658010522  |9 978-3-658-01052-2 
024 7 |a 10.1007/978-3-658-01052-2  |2 doi 
040 |d GrThAP 
050 4 |a QA431 
072 7 |a PBKL  |2 bicssc 
072 7 |a MAT034000  |2 bisacsh 
082 0 4 |a 515.45  |2 23 
100 1 |a Köhne, Matthias.  |e author. 
245 1 0 |a Lp-Theory for Incompressible Newtonian Flows  |h [electronic resource] :  |b Energy Preserving Boundary Conditions, Weakly Singular Domains /  |c by Matthias Köhne. 
264 1 |a Wiesbaden :  |b Springer Fachmedien Wiesbaden :  |b Imprint: Springer Spektrum,  |c 2013. 
300 |a XI, 183 p. 2 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Navier-Stokes Equations -- Energy Preserving Boundary Condition -- Weakly Singular Domain -- Maximal Lp-Regularity. 
520 |a This thesis is devoted to the study of the basic equations of fluid dynamics. First Matthias Köhne focuses on the derivation of a class of boundary conditions, which is based on energy estimates, and, thus, leads to physically relevant conditions. The derived class thereby contains many prominent artificial boundary conditions, which have proved to be suitable for direct numerical simulations involving artificial boundaries. The second part is devoted to the development of a complete Lp-theory for the resulting initial boundary value problems in bounded smooth domains, i.e. the Navier-Stokes equations complemented by one of the derived energy preserving boundary conditions. Finally, the third part of this thesis focuses on the corresponding theory for bounded, non-smooth domains, where the boundary of the domain is allowed to contain a finite number of edges, provided the smooth components of the boundary that meet at such an edge are locally orthogonal. Contents ·         Navier-Stokes Equations ·         Energy Preserving Boundary Condition ·         Weakly Singular Domain ·         Maximal Lp-Regularity Target Groups ·         Scientists, lecturers and graduate students in the fields of mathematical fluid dynamics and partial differential equations as well as experts in applied analysis. The author Matthias Köhne earned a doctorate of Mathematics under the supervision of Prof. Dr. Dieter Bothe at the Department of Mathematics at TU Darmstadt, where his research was supported by the cluster of excellence ''Center of Smart Interfaces'' and the international research training group ''Mathematical Fluid Dynamics''. 
650 0 |a Mathematics. 
650 0 |a Integral equations. 
650 1 4 |a Mathematics. 
650 2 4 |a Integral Equations. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783658010515 
856 4 0 |u http://dx.doi.org/10.1007/978-3-658-01052-2  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)