A Direct Method for Parabolic PDE Constrained Optimization Problems

Andreas Potschka discusses a direct multiple shooting method for dynamic optimization problems constrained by nonlinear, possibly time-periodic, parabolic partial differential equations. In contrast to indirect methods, this approach automatically computes adjoint derivatives without requiring the u...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Potschka, Andreas (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Wiesbaden : Springer Fachmedien Wiesbaden : Imprint: Springer Spektrum, 2014.
Σειρά:Advances in Numerical Mathematics,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03376nam a22004935i 4500
001 978-3-658-04476-3
003 DE-He213
005 20151204185020.0
007 cr nn 008mamaa
008 131129s2014 gw | s |||| 0|eng d
020 |a 9783658044763  |9 978-3-658-04476-3 
024 7 |a 10.1007/978-3-658-04476-3  |2 doi 
040 |d GrThAP 
050 4 |a QA402.5-402.6 
072 7 |a PBU  |2 bicssc 
072 7 |a MAT003000  |2 bisacsh 
082 0 4 |a 519.6  |2 23 
100 1 |a Potschka, Andreas.  |e author. 
245 1 2 |a A Direct Method for Parabolic PDE Constrained Optimization Problems  |h [electronic resource] /  |c by Andreas Potschka. 
264 1 |a Wiesbaden :  |b Springer Fachmedien Wiesbaden :  |b Imprint: Springer Spektrum,  |c 2014. 
300 |a XIV, 216 p. 30 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Advances in Numerical Mathematics,  |x 1616-2994 
505 0 |a Parabolic PDE Constrained Optimization Problems -- Two-Grid Newton-Picard Inexact SQP -- Structure Exploiting Solution of QPs -- Applications and Numerical Results. 
520 |a Andreas Potschka discusses a direct multiple shooting method for dynamic optimization problems constrained by nonlinear, possibly time-periodic, parabolic partial differential equations. In contrast to indirect methods, this approach automatically computes adjoint derivatives without requiring the user to formulate adjoint equations, which can be time-consuming and error-prone. The author describes and analyzes in detail a globalized inexact Sequential Quadratic Programming method that exploits the mathematical structures of this approach and problem class for fast numerical performance. The book features applications, including results for a real-world chemical engineering separation problem.   Contents ·         Parabolic PDE Constrained Optimization Problems ·         Two-Grid Newton-Picard Inexact SQP ·         Structure Exploiting Solution of QPs ·         Applications and Numerical Results       Target Groups ·         Researchers and students in the fields of mathematics, information systems, and scientific computing ·         Users with PDE constrained optimization problems, in particular in (bio-)chemical engineering   The Author Dr. Andreas Potschka is a postdoctoral researcher in the Simulation and Optimization group of Prof. Dr. Dres. h. c. Hans Georg Bock at the Interdisciplinary Center for Scientific Computing, Heidelberg University. He is the head of the research group Model-Based Optimizing Control. 
650 0 |a Mathematics. 
650 0 |a Biochemical engineering. 
650 0 |a Partial differential equations. 
650 0 |a Mathematical optimization. 
650 1 4 |a Mathematics. 
650 2 4 |a Optimization. 
650 2 4 |a Mathematics, general. 
650 2 4 |a Biochemical Engineering. 
650 2 4 |a Partial Differential Equations. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783658044756 
830 0 |a Advances in Numerical Mathematics,  |x 1616-2994 
856 4 0 |u http://dx.doi.org/10.1007/978-3-658-04476-3  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)