Algorithmic Differentiation of Pragma-Defined Parallel Regions Differentiating Computer Programs Containing OpenMP /

Numerical programs often use parallel programming techniques such as OpenMP to compute the program's output values as efficient as possible. In addition, derivative values of these output values with respect to certain input values play a crucial role. To achieve code that computes not only the...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Förster, Michael (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Wiesbaden : Springer Fachmedien Wiesbaden : Imprint: Springer Vieweg, 2014.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03380nam a22004935i 4500
001 978-3-658-07597-2
003 DE-He213
005 20151106191553.0
007 cr nn 008mamaa
008 141009s2014 gw | s |||| 0|eng d
020 |a 9783658075972  |9 978-3-658-07597-2 
024 7 |a 10.1007/978-3-658-07597-2  |2 doi 
040 |d GrThAP 
050 4 |a QA76.9.M35 
072 7 |a UYA  |2 bicssc 
072 7 |a UYAM  |2 bicssc 
072 7 |a COM018000  |2 bisacsh 
072 7 |a MAT003000  |2 bisacsh 
082 0 4 |a 004.0151  |2 23 
100 1 |a Förster, Michael.  |e author. 
245 1 0 |a Algorithmic Differentiation of Pragma-Defined Parallel Regions  |h [electronic resource] :  |b Differentiating Computer Programs Containing OpenMP /  |c by Michael Förster. 
264 1 |a Wiesbaden :  |b Springer Fachmedien Wiesbaden :  |b Imprint: Springer Vieweg,  |c 2014. 
300 |a XI, 405 p. 41 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Introduction with Examples from Numerical Optimization -- Algorithmic Differentiation by Source Transformation -- Transformation rules for Parallel Code Regions (e.g. OpenMP 3.1) -- Static Program Analysis. 
520 |a Numerical programs often use parallel programming techniques such as OpenMP to compute the program's output values as efficient as possible. In addition, derivative values of these output values with respect to certain input values play a crucial role. To achieve code that computes not only the output values simultaneously but also the derivative values, this work introduces several source-to-source transformation rules. These rules are based on a technique called algorithmic differentiation. The main focus of this work lies on the important reverse mode of algorithmic differentiation. The inherent data-flow reversal of the reverse mode must be handled properly during the transformation. The first part of the work examines the transformations in a very general way since pragma-based parallel regions occur in many different kinds such as OpenMP, OpenACC, and Intel Phi. The second part describes the transformation rules of the most important OpenMP constructs. Contents Introduction with Examples from Numerical Optimization Algorithmic Differentiation by Source Transformation Transformation rules for Parallel Code Regions (e.g. OpenMP 3.1) Static Program Analysis Target Groups Lecturers and students of computer science Computer scientists, engineers, mathematicians and numerical analysts The Author Michael Förster is currently Research Associate of the Institute Software and Tools for Computational Engineering, RWTH Aachen University. 
650 0 |a Computer science. 
650 0 |a Computer science  |x Mathematics. 
650 0 |a Computers. 
650 0 |a Applied mathematics. 
650 0 |a Engineering mathematics. 
650 1 4 |a Computer Science. 
650 2 4 |a Mathematics of Computing. 
650 2 4 |a Computing Methodologies. 
650 2 4 |a Appl.Mathematics/Computational Methods of Engineering. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783658075965 
856 4 0 |u http://dx.doi.org/10.1007/978-3-658-07597-2  |z Full Text via HEAL-Link 
912 |a ZDB-2-SCS 
950 |a Computer Science (Springer-11645)