Clifford Algebras Geometric Modelling and Chain Geometries with Application in Kinematics /

After revising known representations of the group of Euclidean displacements Daniel Klawitter gives a comprehensive introduction into Clifford algebras. The Clifford algebra calculus is used to construct new models that allow descriptions of the group of projective transformations and inversions wit...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Klawitter, Daniel (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Wiesbaden : Springer Fachmedien Wiesbaden : Imprint: Springer Spektrum, 2015.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02913nam a22004575i 4500
001 978-3-658-07618-4
003 DE-He213
005 20151106131032.0
007 cr nn 008mamaa
008 141029s2015 gw | s |||| 0|eng d
020 |a 9783658076184  |9 978-3-658-07618-4 
024 7 |a 10.1007/978-3-658-07618-4  |2 doi 
040 |d GrThAP 
050 4 |a QA440-699 
072 7 |a PBM  |2 bicssc 
072 7 |a MAT012000  |2 bisacsh 
082 0 4 |a 516  |2 23 
100 1 |a Klawitter, Daniel.  |e author. 
245 1 0 |a Clifford Algebras  |h [electronic resource] :  |b Geometric Modelling and Chain Geometries with Application in Kinematics /  |c by Daniel Klawitter. 
264 1 |a Wiesbaden :  |b Springer Fachmedien Wiesbaden :  |b Imprint: Springer Spektrum,  |c 2015. 
300 |a XVIII, 216 p. 18 illus., 10 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Models and representations of classical groups -- Clifford algebras, chain geometries over Clifford algebras -- Kinematic mappings for Pin and Spin groups -- Cayley-Klein geometries. 
520 |a After revising known representations of the group of Euclidean displacements Daniel Klawitter gives a comprehensive introduction into Clifford algebras. The Clifford algebra calculus is used to construct new models that allow descriptions of the group of projective transformations and inversions with respect to hyperquadrics. Afterwards, chain geometries over Clifford algebras and their subchain geometries are examined. The author applies this theory and the developed methods to the homogeneous Clifford algebra model corresponding to Euclidean geometry. Moreover, kinematic mappings for special Cayley-Klein geometries are developed. These mappings allow a description of existing kinematic mappings in a unifying framework.  Contents Models and representations of classical groups Clifford algebras, chain geometries over Clifford algebras Kinematic mappings for Pin and Spin groups Cayley-Klein geometries Target Groups Researchers and students in the field of mathematics, physics, and mechanical engineering About the Author Daniel Klawitter is a scientific assistant at the Institute of Geometry at the Technical University of Dresden, Germany.  . 
650 0 |a Mathematics. 
650 0 |a Algebraic geometry. 
650 0 |a Computer mathematics. 
650 0 |a Geometry. 
650 1 4 |a Mathematics. 
650 2 4 |a Geometry. 
650 2 4 |a Algebraic Geometry. 
650 2 4 |a Computational Mathematics and Numerical Analysis. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783658076177 
856 4 0 |u http://dx.doi.org/10.1007/978-3-658-07618-4  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)