Predicting Transcription Factor Complexes A Novel Approach to Data Integration in Systems Biology /

In his master thesis Thorsten Will proposes the substantial information content of protein complexes involving transcription factors in the context of gene regulatory  networks, designs the first computational approaches to predict such complexes as well as their regulatory function and verifies the...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Will, Thorsten (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Wiesbaden : Springer Fachmedien Wiesbaden : Imprint: Springer Spektrum, 2015.
Σειρά:BestMasters
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02742nam a22004935i 4500
001 978-3-658-08269-7
003 DE-He213
005 20151120211857.0
007 cr nn 008mamaa
008 141205s2015 gw | s |||| 0|eng d
020 |a 9783658082697  |9 978-3-658-08269-7 
024 7 |a 10.1007/978-3-658-08269-7  |2 doi 
040 |d GrThAP 
050 4 |a QH324.2-324.25 
072 7 |a PSD  |2 bicssc 
072 7 |a UB  |2 bicssc 
072 7 |a SCI056000  |2 bisacsh 
082 0 4 |a 570.285  |2 23 
100 1 |a Will, Thorsten.  |e author. 
245 1 0 |a Predicting Transcription Factor Complexes  |h [electronic resource] :  |b A Novel Approach to Data Integration in Systems Biology /  |c by Thorsten Will. 
264 1 |a Wiesbaden :  |b Springer Fachmedien Wiesbaden :  |b Imprint: Springer Spektrum,  |c 2015. 
300 |a XIX, 142 p. 29 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a BestMasters 
505 0 |a Protein Complex Prediction -- Protein-Protein Interaction Networks -- Domain-Domain Interaction Networks -- Combinatorial Algorithms -- Algorithm Engineering. 
520 |a In his master thesis Thorsten Will proposes the substantial information content of protein complexes involving transcription factors in the context of gene regulatory  networks, designs the first computational approaches to predict such complexes as well as their regulatory function and verifies the practicability using data of the well-studied yeast S.cereviseae. The novel insights offer extensive capabilities towards a better understanding of the combinatorial control driving transcriptional regulation. Contents Protein Complex Prediction Protein-Protein Interaction Networks Domain-Domain Interaction Networks Combinatorial Algorithms Algorithm Engineering  Target Groups Computational biologists and biologists working with gene regulatory networks Computer scientists interested in biological issues  The Author Currently, the author is pursuing his Ph.D. at the Center for Bioinformatics in Saarbrücken, Germany.  . 
650 0 |a Life sciences. 
650 0 |a Bioinformatics. 
650 0 |a Computational biology. 
650 0 |a Biomathematics. 
650 1 4 |a Life Sciences. 
650 2 4 |a Bioinformatics. 
650 2 4 |a Computer Appl. in Life Sciences. 
650 2 4 |a Mathematical and Computational Biology. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783658082680 
830 0 |a BestMasters 
856 4 0 |u http://dx.doi.org/10.1007/978-3-658-08269-7  |z Full Text via HEAL-Link 
912 |a ZDB-2-BHS 
950 |a Behavioral Science (Springer-11640)