Optimized Response-Adaptive Clinical Trials Sequential Treatment Allocation Based on Markov Decision Problems /

Two-armed response-adaptive clinical trials are modelled as Markov decision problems to pursue two overriding objectives: Firstly, to identify the superior treatment at the end of the trial and, secondly, to keep the number of patients receiving the inferior treatment small. Such clinical trial desi...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Ondra, Thomas (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Wiesbaden : Springer Fachmedien Wiesbaden : Imprint: Springer Spektrum, 2015.
Σειρά:BestMasters
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03085nam a22004935i 4500
001 978-3-658-08344-1
003 DE-He213
005 20151128072249.0
007 cr nn 008mamaa
008 141203s2015 gw | s |||| 0|eng d
020 |a 9783658083441  |9 978-3-658-08344-1 
024 7 |a 10.1007/978-3-658-08344-1  |2 doi 
040 |d GrThAP 
050 4 |a QA71-90 
072 7 |a PBKS  |2 bicssc 
072 7 |a MAT006000  |2 bisacsh 
082 0 4 |a 518  |2 23 
100 1 |a Ondra, Thomas.  |e author. 
245 1 0 |a Optimized Response-Adaptive Clinical Trials  |h [electronic resource] :  |b Sequential Treatment Allocation Based on Markov Decision Problems /  |c by Thomas Ondra. 
264 1 |a Wiesbaden :  |b Springer Fachmedien Wiesbaden :  |b Imprint: Springer Spektrum,  |c 2015. 
300 |a XV, 102 p. 14 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a BestMasters 
505 0 |a Introduction to Markov Decision Problems and Examples -- Finite and Infinite Horizon Markov Decision Problems -- Solution Algorithms: Backward Induction, Value Iteration and Policy Iteration -- Designing Response Adaptive Clinical Trials with Markov Decision Problems. 
520 |a Two-armed response-adaptive clinical trials are modelled as Markov decision problems to pursue two overriding objectives: Firstly, to identify the superior treatment at the end of the trial and, secondly, to keep the number of patients receiving the inferior treatment small. Such clinical trial designs are very important, especially for rare diseases. Thomas Ondra presents the main solution techniques for Markov decision problems and provides a detailed description how to obtain optimal allocation sequences. Contents Introduction to Markov Decision Problems and Examples Finite and Infinite Horizon Markov Decision Problems Solution Algorithms: Backward Induction, Value Iteration and Policy Iteration Designing Response Adaptive Clinical Trials with Markov Decision Problems Target Groups Researchers and students in the fields of mathematics and statistics Professionals in the pharmaceutical industry< The Author Thomas Ondra obtained his Master of Science degree in mathematics at University of Vienna. He is a research assistant and PhD student at the Section for Medical Statistics of Medical University of Vienna.  . 
650 0 |a Mathematics. 
650 0 |a Mathematical analysis. 
650 0 |a Analysis (Mathematics). 
650 0 |a Computer mathematics. 
650 0 |a Probabilities. 
650 1 4 |a Mathematics. 
650 2 4 |a Computational Mathematics and Numerical Analysis. 
650 2 4 |a Probability Theory and Stochastic Processes. 
650 2 4 |a Analysis. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783658083434 
830 0 |a BestMasters 
856 4 0 |u http://dx.doi.org/10.1007/978-3-658-08344-1  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)