Bayesian Analysis of Failure Time Data Using P-Splines

Matthias Kaeding discusses Bayesian methods for analyzing discrete and continuous failure times where the effect of time and/or covariates is modeled via P-splines and additional basic function expansions, allowing the replacement of linear effects by more general functions. The MCMC methodology for...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Kaeding, Matthias (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Wiesbaden : Springer Fachmedien Wiesbaden : Imprint: Springer Spektrum, 2015.
Σειρά:BestMasters
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02864nam a22005055i 4500
001 978-3-658-08393-9
003 DE-He213
005 20151120224025.0
007 cr nn 008mamaa
008 141226s2015 gw | s |||| 0|eng d
020 |a 9783658083939  |9 978-3-658-08393-9 
024 7 |a 10.1007/978-3-658-08393-9  |2 doi 
040 |d GrThAP 
050 4 |a QA273.A1-274.9 
050 4 |a QA274-274.9 
072 7 |a PBT  |2 bicssc 
072 7 |a PBWL  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
082 0 4 |a 519.2  |2 23 
100 1 |a Kaeding, Matthias.  |e author. 
245 1 0 |a Bayesian Analysis of Failure Time Data Using P-Splines  |h [electronic resource] /  |c by Matthias Kaeding. 
264 1 |a Wiesbaden :  |b Springer Fachmedien Wiesbaden :  |b Imprint: Springer Spektrum,  |c 2015. 
300 |a IX, 110 p. 23 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a BestMasters 
505 0 |a Relative Risk and Log-Location-Scale Family -- Bayesian P-Splines -- Discrete Time Models -- Continuous Time Models. 
520 |a Matthias Kaeding discusses Bayesian methods for analyzing discrete and continuous failure times where the effect of time and/or covariates is modeled via P-splines and additional basic function expansions, allowing the replacement of linear effects by more general functions. The MCMC methodology for these models is presented in a unified framework and applied on data sets. Among others, existing algorithms for the grouped Cox and the piecewise exponential model under interval censoring are combined with a data augmentation step for the applications. The author shows that the resulting Gibbs sampler works well for the grouped Cox and is merely adequate for the piecewise exponential model. Contents Relative Risk and Log-Location-Scale Family Bayesian P-Splines Discrete Time Models Continuous Time Models Target Groups Researchers and students in the fields of statistics, engineering, and life sciences Practitioners in the fields of reliability engineering and data analysis involved with lifetimes The Author Matthias Kaeding obtained his Master of Science degree at the University of Bamberg in Survey Statistics. 
650 0 |a Mathematics. 
650 0 |a Laboratory medicine. 
650 0 |a Bioinformatics. 
650 0 |a Probabilities. 
650 1 4 |a Mathematics. 
650 2 4 |a Probability Theory and Stochastic Processes. 
650 2 4 |a Laboratory Medicine. 
650 2 4 |a Bioinformatics. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783658083922 
830 0 |a BestMasters 
856 4 0 |u http://dx.doi.org/10.1007/978-3-658-08393-9  |z Full Text via HEAL-Link 
912 |a ZDB-2-BHS 
950 |a Behavioral Science (Springer-11640)