Model-Based Recursive Partitioning with Adjustment for Measurement Error Applied to the Cox’s Proportional Hazards and Weibull Model /

Model-based recursive partitioning (MOB) provides a powerful synthesis between machine-learning inspired recursive partitioning methods and regression models. Hanna Birke extends this approach by allowing in addition for measurement error in covariates, as frequently occurring in biometric (or econo...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Birke, Hanna (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Wiesbaden : Springer Fachmedien Wiesbaden : Imprint: Springer Spektrum, 2015.
Σειρά:BestMasters
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03397nam a22004815i 4500
001 978-3-658-08505-6
003 DE-He213
005 20151121000018.0
007 cr nn 008mamaa
008 150127s2015 gw | s |||| 0|eng d
020 |a 9783658085056  |9 978-3-658-08505-6 
024 7 |a 10.1007/978-3-658-08505-6  |2 doi 
040 |d GrThAP 
050 4 |a QA71-90 
072 7 |a PBKS  |2 bicssc 
072 7 |a MAT006000  |2 bisacsh 
082 0 4 |a 518  |2 23 
100 1 |a Birke, Hanna.  |e author. 
245 1 0 |a Model-Based Recursive Partitioning with Adjustment for Measurement Error  |h [electronic resource] :  |b Applied to the Cox’s Proportional Hazards and Weibull Model /  |c by Hanna Birke. 
264 1 |a Wiesbaden :  |b Springer Fachmedien Wiesbaden :  |b Imprint: Springer Spektrum,  |c 2015. 
300 |a XXIV, 240 p. 65 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a BestMasters 
505 0 |a MOB and Measurement Error Modelling -- Derivation of an Adjusted MOB Algorithm for Covariates Measured with Error for the Cox and Weibull Model -- Implementation of the Suggested Method for the Weibull Model in the Open-Source Programming Language R -- Simulation Study Showing the Performance of the Implemented Method. 
520 |a Model-based recursive partitioning (MOB) provides a powerful synthesis between machine-learning inspired recursive partitioning methods and regression models. Hanna Birke extends this approach by allowing in addition for measurement error in covariates, as frequently occurring in biometric (or econometric) studies, for instance, when measuring blood pressure or caloric intake per day. After an introduction into the background, the extended methodology is developed in detail for the Cox model and the Weibull model, carefully implemented in R, and investigated in a comprehensive simulation study. Contents MOB and Measurement Error Modelling Derivation of an Adjusted MOB Algorithm for Covariates Measured with Error for the Cox and Weibull Model Implementation of the Suggested Method for the Weibull Model in the Open-Source Programming Language R Simulation Study Showing the Performance of the Implemented Method Target Groups Researchers and students in the fields of statistics and cognate disciplines with interest in advanced modelling in combination with measurement error in covariates Data analysts of complex biometric or econometric studies with variables that are difficult to measure in practice The Author Hanna Birke wrote her master thesis under the supervision of Prof. Dr. Thomas Augustin at the department of statistics of the LMU Munich and is currently working on her doctoral thesis.  . 
650 0 |a Mathematics. 
650 0 |a Cancer research. 
650 0 |a Computer mathematics. 
650 0 |a Biomathematics. 
650 1 4 |a Mathematics. 
650 2 4 |a Computational Mathematics and Numerical Analysis. 
650 2 4 |a Mathematical and Computational Biology. 
650 2 4 |a Cancer Research. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783658085049 
830 0 |a BestMasters 
856 4 0 |u http://dx.doi.org/10.1007/978-3-658-08505-6  |z Full Text via HEAL-Link 
912 |a ZDB-2-BHS 
950 |a Behavioral Science (Springer-11640)